Yoo Myung Hye, Kim Joungmin, Song Sanghoun
Department of English Language and Literature, Chungnam National University, Daejeon, South Korea.
Department of Japanese Language and Literature, Korea University, Seoul, South Korea.
PLoS One. 2025 Jul 7;20(7):e0326943. doi: 10.1371/journal.pone.0326943. eCollection 2025.
This study examines the multilingual capabilities of GPT, focusing on its handling of syntactic ambiguity across English, Korean, and Japanese. We investigate whether GPT can capture language-specific attachment preferences or if it relies primarily on English-centric training patterns. Using ambiguous relative clauses as a testing ground, we assess GPT's interpretation tendencies across language contexts. Our findings reveal that, while GPT (GPT-3.5-turbo, GPT-4-turbo, GPT 4o)'s performance aligns with native English speakers' preferred interpretations, it overgeneralizes this interpretation in Korean and lacks clear preferences in Japanese, despite distinct attachment biases among native speakers of these languages. The newer, smaller-scale models-o1-mini and o3-mini-further reinforce this trend by closely mirroring English attachment patterns in both Korean and Japanese. Overall results suggest that GPT's multilingual proficiency is limited, likely reflecting a bias toward high-resource languages like English, although differences in model size and tuning strategies may partially mitigate the extent of English-centric generalization. While GPT models demonstrate aspects of human-like language processing, our findings underscore the need for further refinement to achieve a more nuanced engagement with linguistic diversity across languages.
本研究考察了GPT的多语言能力,重点关注其对英语、韩语和日语中句法歧义的处理。我们调查GPT是否能够捕捉特定语言的依存偏好,或者它是否主要依赖以英语为中心的训练模式。我们以歧义关系从句为试验场,评估GPT在不同语言语境下的解释倾向。我们的研究结果表明,虽然GPT(GPT-3.5-turbo、GPT-4-turbo、GPT 4o)的表现与以英语为母语者的偏好解释一致,但它在韩语中过度推广了这种解释,而在日语中缺乏明确的偏好,尽管这些语言的母语者存在不同的依存倾向。更新的、规模较小的模型——o1-mini和o3-mini——通过在韩语和日语中紧密模仿英语的依存模式,进一步强化了这一趋势。总体结果表明,GPT的多语言能力有限,这可能反映出其对英语等高资源语言的偏向,尽管模型大小和调整策略的差异可能会部分减轻以英语为中心的泛化程度。虽然GPT模型展示了类人语言处理的一些方面,但我们的研究结果强调,需要进一步改进,以实现对跨语言语言多样性更细致入微的处理。