Lu Junsong, Lin Chujun
Department of Psychology, University of California San Diego, La Jolla, CA, USA.
Department of Psychology, Columbia University, New York, NY, USA.
Commun Psychol. 2025 Jul 7;3(1):98. doi: 10.1038/s44271-025-00275-w.
Long-standing research suggests that social inferences are captured by a few latent dimensions (e.g., warmth and competence). Others argue that social inferences are more complex but lack sufficient empirical support. Here, we conducted two pre-registered studies to test the high-dimensional properties of social inferences. To maximize generalizability, we computationally sampled diverse naturalistic videos and recruited U.S. representative participants (Study 1, N = 1598). Participants freely described people in videos using their own words. Cross-validation identified 25 latent dimensions which explained only 15% of the variance in the data. Alternatively, a sparse network model representing the unique correlations between inferences better represented the data. The network models informed the dynamics of naturalistic inferences, revealing how different inferences co-occurred and how they unfolded over time from concrete to abstract (Study 1). The network models also indicated cultural differences in how one inference was related to another between samples (Study 2, Asian N = 651, European N = 792). Together, these findings show that the high-dimensional network approach provides an alternative model for understanding the mental representation of social inferences in naturalistic contexts, which provides new insights into the dynamics and diversities of social inferences beyond the static, universal structure found with traditional low-dimensional latent-construct approaches.
长期以来的研究表明,社会推理由几个潜在维度(如热情和能力)所捕捉。其他人则认为社会推理更为复杂,但缺乏足够的实证支持。在此,我们进行了两项预注册研究,以测试社会推理的高维属性。为了最大限度地提高普遍性,我们通过计算对各种自然主义视频进行采样,并招募了具有美国代表性的参与者(研究1,N = 1598)。参与者用自己的话自由描述视频中的人物。交叉验证确定了25个潜在维度,这些维度仅解释了数据中15%的方差。或者,一个表示推理之间独特相关性的稀疏网络模型能更好地呈现数据。网络模型揭示了自然主义推理的动态过程,揭示了不同推理是如何同时出现的,以及它们如何随着时间从具体到抽象地展开(研究1)。网络模型还表明了不同样本之间一种推理与另一种推理的关联方式上的文化差异(研究2,亚洲人N = 651,欧洲人N = 792)。总之,这些发现表明,高维网络方法为理解自然主义背景下社会推理的心理表征提供了一种替代模型,这为社会推理的动态过程和多样性提供了新的见解,超越了传统低维潜在结构方法所发现的静态、通用结构。