Zimmerman Dabriel, Mandal Ayan S, Jung Benjamin, Buczek Matthew J, Schabdach Jenna M, Karandikar Shivaram, Kafadar Eren, Mercedes Laura, Kohler Sepp, Abdel-Qader Leila, Gur Raquel E, Roalf David, Satterthwaite Theodore D, Schmitt J Eric, Williams Remo, Padmanabhan Vivek, Seidlitz Jakob, White Lauren K, Sotardi Susan, Vossough Arastoo, Alexander-Bloch Aaron
Department of Child and Adolescent Psychiatry and Behavioral Science Children's Hospital of Philadelphia, Philadelphia, PA.
Department of Psychiatry, University of Pennsylvania, Philadelphia, PA.
bioRxiv. 2025 Jul 1:2025.06.25.661530. doi: 10.1101/2025.06.25.661530.
Progress at the intersection of artificial intelligence and pediatric neuroimaging necessitates large, heterogeneous datasets to generate robust and generalizable models. Retrospective analysis of clinical brain magnetic resonance imaging (MRI) scans offers a promising avenue to augment prospective research datasets, leveraging the extensive repositories of scans routinely acquired by hospital systems in the course of clinical care. Here, we present a systematic protocol for identifying "scans with limited imaging pathology" through machine-assisted manual review of radiology reports. The protocol employs a standardized grading scheme developed with expert neuroradiologists and implemented by non-clinician graders. Categorizing scans based on the presence or absence of significant pathology and image quality concerns, facilitates the repurposing of clinical brain MRI data for brain research. Such an approach has the potential to harness vast clinical imaging archives - exemplified by over 250,000 brain MRIs at the Children's Hospital of Philadelphia - to address demographic biases in research participation, to increase sample size, and to improve replicability in neurodevelopmental imaging research. Ultimately, this protocol aims to enable scalable, reliable identification of clinical control brain MRIs, supporting large-scale, generalizable neuroimaging studies of typical brain development and neurogenetic conditions.
人工智能与儿科神经影像学交叉领域的进展需要大量、异质性的数据集来生成强大且可推广的模型。对临床脑磁共振成像(MRI)扫描进行回顾性分析为扩充前瞻性研究数据集提供了一条有前景的途径,利用医院系统在临床护理过程中常规采集的大量扫描存储库。在此,我们提出一种通过对放射学报告进行机器辅助人工审核来识别“影像病理学有限的扫描”的系统方案。该方案采用了与神经放射学专家共同制定并由非临床评分员实施的标准化分级方案。根据是否存在显著病理学和图像质量问题对扫描进行分类,有助于将临床脑MRI数据重新用于脑研究。这种方法有潜力利用庞大的临床影像档案——以费城儿童医院超过25万例脑MRI为例——来解决研究参与中的人口统计学偏差、增加样本量并提高神经发育成像研究的可重复性。最终,该方案旨在实现对临床对照脑MRI进行可扩展、可靠的识别,支持对典型脑发育和神经遗传疾病进行大规模、可推广的神经影像学研究。