Suppr超能文献

ComBatLS:一种用于多站点图像协调的位置和尺度保持方法。

ComBatLS: A Location- and Scale-Preserving Method for Multi-Site Image Harmonization.

作者信息

Gardner Margaret, Shinohara Russell T, Bethlehem Richard A I, Romero-Garcia Rafael, Warrier Varun, Dorfschmidt Lena, Shanmugan Sheila, Thompson Paul, Seidlitz Jakob, Alexander-Bloch Aaron F, Chen Andrew A

机构信息

Brain-Gene-Development Lab, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, Pennsylvania, USA.

Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

出版信息

Hum Brain Mapp. 2025 Jun 1;46(8):e70197. doi: 10.1002/hbm.70197.

Abstract

Recent study has leveraged massive datasets and advanced harmonization methods to construct normative models of neuroanatomical features and benchmark individuals' morphology. However, current harmonization tools do not preserve the effects of biological covariates including sex and age on features' variances; this failure may induce error in normative scores, particularly when such factors are distributed unequally across sites. Here, we introduce a new extension of the popular ComBat harmonization method, ComBatLS, that preserves biological variance in features' locations and scales. We use UK Biobank data to show that ComBatLS robustly replicates individuals' normative scores better than other ComBat methods when subjects are assigned to sex-imbalanced synthetic "sites." Additionally, we demonstrate that ComBatLS significantly reduces sex biases in normative scores compared to traditional methods. Finally, we show that ComBatLS successfully harmonizes consortium data collected across over 50 studies. R implementation of ComBatLS is available at https://github.com/andy1764/ComBatFamily.

摘要

最近的研究利用大规模数据集和先进的协调方法构建神经解剖特征的规范模型,并对个体形态进行基准测试。然而,当前的协调工具并未保留包括性别和年龄在内的生物协变量对特征方差的影响;这种不足可能会在规范评分中引入误差,尤其是当这些因素在不同站点分布不均时。在此,我们引入了流行的ComBat协调方法的新扩展ComBatLS,它在特征的位置和尺度上保留了生物方差。我们使用英国生物银行的数据表明,当将受试者分配到性别不均衡的合成“站点”时,ComBatLS比其他ComBat方法更能稳健地复制个体的规范评分。此外,我们证明与传统方法相比,ComBatLS显著降低了规范评分中的性别偏差。最后,我们表明ComBatLS成功地协调了来自50多项研究的联盟数据。ComBatLS的R实现可在https://github.com/andy1764/ComBatFamily获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验