Sharma Shubham, Kumar Ajeet, Saini Than Singh
Advanced Photonics Simulation Research Lab, Department of Applied Physics, Delhi Technological University, Delhi, India.
Department of Physics, National Institute of Technology Kurukshetra, Kurukshetra, HR, India.
Cell Biochem Biophys. 2025 Jul 9. doi: 10.1007/s12013-025-01814-2.
In this article, we have proposed a sensor capable of sensing and detecting various blood constituents within the terahertz frequency range. Our model has been constructed using COMSOL Multiphysics software, and we have analyzed the optical properties using the full vectorial finite-element method (FV-FEM). A solid core is chosen for the proposed sensor due to its unique ability to transmit light across a wide range of wavelengths. Since blood is a critical fluid in the human body, the identification of its components holds significant importance. Our innovative design features a spiral-shaped twin-core photonic crystal fiber (SSTC-PCF) sensor that targets key blood components having different refractive indices (RI), including water, plasma, white blood cells (WBCs), hemoglobin, and red blood cells (RBCs). The cladding in spiral geometry enhances the modal confinement and offers enhanced birefringence to our structure. In the proposed PCF design, different blood components are introduced into the small central elliptical hole serving as the sensing channel. Further, the sensing capabilities have been assessed by evaluating the coupling length and analyzing the transmission power spectrum, which has been calculated using the effective mode indices of the coupling modes. The presented model is simulated in the terahertz range (0.7-0.8 THz) to calculate optical properties. The proposed sensor is designed to work within a refractive index range of 1.33-1.40, allowing for effective detection of key blood components. The proposed SSTC-PCF sensor exhibits the highest sensitivity achieved at 5,75,511 nm/RIU with less coupling length and better than published previous works, which is the main feature of the proposed sensor. Additionally, maximum birefringence values for x-polarization are 3.27 × 10, 3.67 × 10, 3.90 × 10, 4.44 × 10 and 5.14 × 10 for water, plasma, WBC, Hemoglobin, and RBC, respectively, and the highest coupling length values for x-polarization are 0.09 m for water, 0.08 m for plasma, 0.08 m for WBCs, 0.07 m for hemoglobin, and 0.06 m for RBC. This sensor design offers high sensitivity and a short coupling length, making it suitable for various applications in the biomedical field.
在本文中,我们提出了一种能够在太赫兹频率范围内感测和检测各种血液成分的传感器。我们的模型是使用COMSOL Multiphysics软件构建的,并且我们使用全矢量有限元方法(FV-FEM)分析了光学特性。由于其在宽波长范围内传输光的独特能力,为所提出的传感器选择了实心芯。由于血液是人体中的关键流体,因此识别其成分具有重要意义。我们的创新设计采用了螺旋形双芯光子晶体光纤(SSTC-PCF)传感器,该传感器针对具有不同折射率(RI)的关键血液成分,包括水、血浆、白细胞(WBC)、血红蛋白和红细胞(RBC)。螺旋几何形状的包层增强了模式限制,并为我们的结构提供了增强的双折射。在所提出的光子晶体光纤设计中,将不同的血液成分引入作为传感通道的小中心椭圆孔中。此外,通过评估耦合长度并分析传输功率谱来评估传感能力,传输功率谱是使用耦合模式的有效模式指数计算得出的。所提出的模型在太赫兹范围(0.7-0.8 THz)内进行模拟以计算光学特性。所提出的传感器设计用于在1.33-1.40的折射率范围内工作,从而能够有效检测关键血液成分。所提出的SSTC-PCF传感器在5,75,511 nm/RIU处表现出最高灵敏度,耦合长度较短,优于先前发表的作品,这是所提出传感器的主要特征。此外,水、血浆、白细胞、血红蛋白和红细胞的x偏振最大双折射值分别为3.27×10、3.67×10、3.90×10、4.44×10和5.14×10,x偏振的最高耦合长度值分别为水0.09 m、血浆0.08 m、白细胞0.08 m、血红蛋白0.07 m和红细胞0.06 m。这种传感器设计具有高灵敏度和短耦合长度,适用于生物医学领域的各种应用。