Suppr超能文献

基于多尺度模拟对Ent385 AmpC β-内酰胺酶增强头孢他啶水解作用的见解

Insights into the Enhanced Ceftazidime Hydrolysis by Ent385 AmpC β‑Lactamase from Multiscale Simulations.

作者信息

Lima Anderson H, van der Kamp Marc W

机构信息

School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K.

Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Rua Augusto Corrêa, 01, 66075-110, Belém, Pará, Brasil.

出版信息

ACS Catal. 2025 Jun 23;15(13):11739-11748. doi: 10.1021/acscatal.5c02383. eCollection 2025 Jul 4.

Abstract

The emergence of multidrug-resistant bacteria poses a significant threat to public health. Particularly, they are becoming increasingly resistant to β-lactam antibiotics, which are one of the most important drug classes for the treatment of bacterial infections. Ceftazidime-avibactam has shown promising activity against highly drug-resistant bacteria, including carbapenem-resistant Enterobacterales. However, an Ala294-Pro295 deletion in the Class CAmpC β-lactamase can confer reduced susceptibility to these agents. In this study, we investigated the molecular mechanisms underlying the enhanced hydrolysis of ceftazidime by Ent385 AmpC β-lactamase with the deletion using quantum mechanics/molecular mechanics (QM/MM) simulations. We used constant pH molecular dynamics simulations of the β-lactamase-ceftazidime acyl-enzyme complex to verify the likely protonation states, confirming Tyr150 primarily exists as a tyrosinate. We then used QM/MM (DFTB2/ff14SB) umbrella sampling to calculate the reaction-free energy barriers (Δ ) for the deacylation step of cephalosporin hydrolysis. This reveals that Tyr150 (rather than the substrate) acts as the base. Importantly, the difference in Δ between the canonical AmpC (P99) and the Ent385 variant with Ala294-Pro295 reinserted, on the one hand, and the Ent385 variant, on the other, was in very good agreement with the difference deduced from experimental kinetic data. Detailed analysis of the transition state ensembles, alongside additional simulations, shows that the Ala294-Pro295 deletion allows the entrance of an additional water molecule that helps stabilize the tetrahedral intermediate. Overall, our QM/MM simulations provide valuable insights into the reaction mechanism and reasons for enhanced ceftazidime breakdown. The protocol used in this study successfully captures the kinetic differences observed among the studied variants. This approach can be employed to investigate other Class C β-lactamase variants with similar features, providing insights into their mechanisms and potential contributions to reduced susceptibility to antibiotic treatments.

摘要

多重耐药菌的出现对公共卫生构成了重大威胁。特别是,它们对β-内酰胺类抗生素的耐药性越来越强,而β-内酰胺类抗生素是治疗细菌感染最重要的药物类别之一。头孢他啶-阿维巴坦对包括耐碳青霉烯类肠杆菌科细菌在内的高度耐药菌显示出有前景的活性。然而,CAmpC类β-内酰胺酶中的Ala294-Pro295缺失可导致对这些药物的敏感性降低。在本研究中,我们使用量子力学/分子力学(QM/MM)模拟研究了Ent385 AmpCβ-内酰胺酶缺失导致头孢他啶水解增强的分子机制。我们对β-内酰胺酶-头孢他啶酰基酶复合物进行了恒定pH分子动力学模拟,以验证可能的质子化状态,证实Tyr150主要以酪氨酸盐形式存在。然后,我们使用QM/MM(DFTB2/ff14SB)伞形采样来计算头孢菌素水解脱酰步骤的反应自由能垒(Δ)。这表明Tyr150(而非底物)作为碱。重要的是,一方面,标准AmpC(P99)和重新插入Ala294-Pro295的Ent385变体之间的Δ差异,与另一方面Ent385变体之间的差异,与从实验动力学数据推导的差异非常吻合。对过渡态系综的详细分析以及额外的模拟表明,Ala294-Pro295缺失允许额外的水分子进入,有助于稳定四面体中间体。总体而言,我们的QM/MM模拟为反应机制和头孢他啶分解增强的原因提供了有价值的见解。本研究中使用的方案成功捕捉了所研究变体之间观察到的动力学差异。这种方法可用于研究具有相似特征的其他C类β-内酰胺酶变体,深入了解其机制以及对降低抗生素治疗敏感性的潜在影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcbc/12235585/7f38bf3ac69f/cs5c02383_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验