Suppr超能文献

用于高效太阳能海水淡化和发电的仿生光热两性离子纤维膜。

Bioinspired photothermal zwitterionic fibrous membrane for high-efficiency solar desalination and electricity generation.

作者信息

Wang Yuzhu, Chen Feng, Chen Qiaochu, Liu Wei, Huang Qihang, Hou Xinru, Li Shuang, Cheng Chong, Xie Xiaodong, Meng Nan, Liao Yaozu

机构信息

State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China.

College of Polymer Science and Engineering, Sichuan University, Chengdu, China.

出版信息

Nat Commun. 2025 Jul 10;16(1):6373. doi: 10.1038/s41467-025-61244-9.

Abstract

Solar-driven desalination holds great promise for addressing the scarcity of global freshwater. However, salt accumulation remains a significant challenge, particularly for two-dimensional membrane materials. Inspired by aquaporins, we design a porous zwitterionic fibrous membrane that selectively transports water while rejecting Na and Cl, achieving efficient evaporation and salt resistance. The incorporation of porphyrin-based conjugated microporous polymers enhances photothermal conversion and antibacterial properties, while zwitterionic groups and porous structure disrupt high-salinity gradients, effectively preventing salt deposition. The membrane achieves an evaporation rate of 2.64 kg m h and a photothermal efficiency of 97.6% under 1 kW m solar irradiation. Furthermore, the coupling of photothermal evaporator and thermoelectric module achieves a stable electric output (power density: 1.5 W m). This work presents a synergistic strategy for salt resistance, water purification and energy generation, advancing the design of solar-thermal-electric integrated systems.

摘要

太阳能驱动的海水淡化对于解决全球淡水资源短缺具有巨大潜力。然而,盐积累仍然是一个重大挑战,特别是对于二维膜材料而言。受水通道蛋白的启发,我们设计了一种多孔两性离子纤维膜,该膜能够选择性地传输水,同时排斥Na和Cl,实现高效蒸发和抗盐性能。基于卟啉的共轭微孔聚合物的引入增强了光热转换和抗菌性能,而两性离子基团和多孔结构破坏了高盐度梯度,有效防止了盐沉积。在1kW/m²的太阳辐射下,该膜的蒸发速率达到2.64kg·m⁻²·h⁻¹,光热效率为97.6%。此外,光热蒸发器与热电模块的耦合实现了稳定的电输出(功率密度:1.5W·m⁻²)。这项工作提出了一种抗盐、水净化和能源产生的协同策略,推动了太阳能-热电集成系统的设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92e3/12246431/336940b3a3aa/41467_2025_61244_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验