Suppr超能文献

用于最小化钙钛矿/硅串联太阳能电池复合损失并提高稳定性的双面增强自组装单分子层界面

Bifacially Reinforced Self-Assembled Monolayer Interfaces for Minimized Recombination Loss and Enhanced Stability in Perovskite/Silicon Tandem Solar Cells.

作者信息

Guo Chang, Du Hong-Qiang, Wang Yu-Chen, Gao Xiang, Lan Yu-Qi, Xiao Yu-Song, Jiang Wei, Zhou Yi-Chen, Yuan Qi-Bo, Qiang Zi-Yue, Zheng Ji-Hong, Yang Long-Hui, Wang Cai-Xia, Yang Ning, Lin Rui, Liang Gui-Jie, Rothmann Mathias Uller, Ouyang Xinhua, Cheng Yi-Bing, Li Wei

机构信息

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.

Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China.

出版信息

Adv Mater. 2025 Jul;37(29):e2504520. doi: 10.1002/adma.202504520. Epub 2025 May 12.

Abstract

Perovskite/silicon tandem solar cells have shown higher power conversion efficiencies (PCEs) than single-junction cells. However, their record PCE still falls short of the theoretical maximum, and their stability is significantly lower than that of crystalline silicon solar cells. These challenges stem from the substantial losses in open-circuit voltage (V) and the instability of wide-bandgap perovskite devices, which are mainly caused by nonradiative recombination and degradation at the heterojunction interfaces, respectively. Specifically, the weak adhesion between indium tin oxide (ITO) and self-assembled monolayers (SAMs), along with inadequate interactions between the SAMs and the perovskite, contributes to this instability. Herein, a novel SAM material, 4-(11H-benzo[a]carbazol-11-yl)butyl (4-PhCz), has been developed to bifacially reinforce interfaces by enhancing SAM coverage on ITO and strengthening the interactions between SAM and perovskites. The resulting 1.67 eV perovskite solar cell (PSCs) achieves a V of 1.273 V with a low voltage loss of 0.397 V relative to the bandgap and a PCE of 22.53%. The 4-PhCz-based perovskite/silicon tandem cell achieves a V of 1.96 V and a PCE of 31.26%, retaining 92% of its initial efficiency after 1000 h of maximum power point tracking (MPPT) under 1-sun illumination in a nitrogen atmosphere at 25 °C.

摘要

钙钛矿/硅串联太阳能电池已展现出比单结电池更高的功率转换效率(PCE)。然而,其创纪录的PCE仍低于理论最大值,且其稳定性显著低于晶体硅太阳能电池。这些挑战源于开路电压(V)的大量损失以及宽带隙钙钛矿器件的不稳定性,分别主要由非辐射复合和异质结界面处的降解引起。具体而言,氧化铟锡(ITO)与自组装单分子层(SAMs)之间的弱粘附力,以及SAMs与钙钛矿之间相互作用不足,导致了这种不稳定性。在此,已开发出一种新型SAM材料,即4-(11H-苯并[a]咔唑-11-基)丁基(4-PhCz),通过增强ITO上的SAM覆盖率并加强SAM与钙钛矿之间的相互作用来双面增强界面。由此制备的1.67 eV钙钛矿太阳能电池(PSC)实现了1.273 V的V,相对于带隙的低电压损失为0.397 V,PCE为22.53%。基于4-PhCz的钙钛矿/硅串联电池实现了1.96 V的V和31.26%的PCE,在25°C的氮气气氛中1个太阳光照下进行1000小时最大功率点跟踪(MPPT)后,仍保留其初始效率的92%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验