Moeller Julia
Leipzig University and University of Erfurt, Germany.
J Pers Oriented Res. 2025 Jun 28;11(2):58-78. doi: 10.17505/jpor.2025.28091. eCollection 2025.
Many person-oriented studies use -standardized scores before conducting cluster analyses and/or before displaying group differences. This article summarizes reasons why standardized scores can often be problematic and misleading in person-oriented methods. The article shows examples illustrating why and how the use of -scores in group classification and comparisons can be misleading, and proposes less problematic methods. Reasons why -standardized scores should be avoided when classifying or displaying differences between clusters, profiles, and other groups are: The ratio of the difference between two groups is distorted in -scores.The ratio of the difference between two variables is distorted in -scores.Information about item endorsement and item rejection is lost.The psychological meaning of a given -score does not compare across samples and variables.Group assignments can be misleading if -scores are used to assign individuals to groups.The group size and group frequency may be affected if -scores instead of raw scores are used to assign individuals to groups.Group differences in further outcome variables can change if -scores instead of raw scores are used to assign individuals to groups.Alternative normalization techniques perform better than -standardization in cluster analyses.-standardization relies on homogeneity assumptions, including unimodality, but distributions analysed in person-oriented research are often multimodal.Person-oriented methods typically examine within-person patterns to answer research questions about within-person phenomena, whereas -standardization typically refers to between-person variation, which creates a logical mismatch between theory and method. Alternatives to using -scores in graphs displaying profiles and group differences are using raw scores or using scale transformations that use the range, not the standard deviation in the normalization.
许多以人为本的研究在进行聚类分析和/或展示组间差异之前会使用标准化分数。本文总结了在以人为本的方法中,标准化分数为何常常存在问题且具有误导性的原因。文章展示了一些示例,说明在组分类和比较中使用标准化分数为何以及如何具有误导性,并提出了问题较少的方法。在对聚类、剖面图和其他组进行分类或展示差异时应避免使用标准化分数的原因如下:两组之间差异的比率在标准化分数中会被扭曲。两个变量之间差异的比率在标准化分数中会被扭曲。关于项目认可和项目拒绝的信息会丢失。给定标准化分数的心理意义在不同样本和变量之间无法进行比较。如果使用标准化分数将个体分配到组中,组分配可能会产生误导。如果使用标准化分数而非原始分数将个体分配到组中,组大小和组频率可能会受到影响。如果使用标准化分数而非原始分数将个体分配到组中,进一步结果变量中的组差异可能会发生变化。在聚类分析中,替代归一化技术比标准化表现更好。标准化依赖于同质性假设,包括单峰性,但在以人为本的研究中分析的分布通常是多峰的。以人为本的方法通常检查个体内部模式以回答关于个体内部现象的研究问题,而标准化通常指个体间变异,这在理论和方法之间造成了逻辑不匹配。在展示剖面图和组差异的图表中,替代使用标准化分数的方法是使用原始分数或使用基于范围而非标准化偏差的量表转换。