Guo Xu, Li Runze, Zhang Zhe, Zou Changliang
School of Statistics, Beijing Normal University, China.
Department of Statistics, The Pennsylvania State University, USA.
J Am Stat Assoc. 2025;120(549):186-197. doi: 10.1080/01621459.2024.2310314. Epub 2024 Mar 8.
This paper aims to develop an effective model-free inference procedure for high-dimensional data. We first reformulate the hypothesis testing problem via sufficient dimension reduction framework. With the aid of new reformulation, we propose a new test statistic and show that its asymptotic distribution is distribution whose degree of freedom does not depend on the unknown population distribution. We further conduct power analysis under local alternative hypotheses. In addition, we study how to control the false discovery rate of the proposed tests, which are correlated, to identify important predictors under a model-free framework. To this end, we propose a multiple testing procedure and establish its theoretical guarantees. Monte Carlo simulation studies are conducted to assess the performance of the proposed tests and an empirical analysis of a real-world data set is used to illustrate the proposed methodology.
本文旨在为高维数据开发一种有效的无模型推断程序。我们首先通过充分降维框架重新构建假设检验问题。借助新的重构方法,我们提出了一种新的检验统计量,并表明其渐近分布是自由度不依赖于未知总体分布的分布。我们进一步在局部备择假设下进行功效分析。此外,我们研究如何控制所提出的相关检验的错误发现率,以便在无模型框架下识别重要预测变量。为此,我们提出了一种多重检验程序并建立了其理论保证。进行了蒙特卡罗模拟研究以评估所提出检验的性能,并使用一个真实数据集的实证分析来说明所提出的方法。