Suppr超能文献

高维数据的无模型统计推断

Model-Free Statistical Inference on High-Dimensional Data.

作者信息

Guo Xu, Li Runze, Zhang Zhe, Zou Changliang

机构信息

School of Statistics, Beijing Normal University, China.

Department of Statistics, The Pennsylvania State University, USA.

出版信息

J Am Stat Assoc. 2025;120(549):186-197. doi: 10.1080/01621459.2024.2310314. Epub 2024 Mar 8.

Abstract

This paper aims to develop an effective model-free inference procedure for high-dimensional data. We first reformulate the hypothesis testing problem via sufficient dimension reduction framework. With the aid of new reformulation, we propose a new test statistic and show that its asymptotic distribution is distribution whose degree of freedom does not depend on the unknown population distribution. We further conduct power analysis under local alternative hypotheses. In addition, we study how to control the false discovery rate of the proposed tests, which are correlated, to identify important predictors under a model-free framework. To this end, we propose a multiple testing procedure and establish its theoretical guarantees. Monte Carlo simulation studies are conducted to assess the performance of the proposed tests and an empirical analysis of a real-world data set is used to illustrate the proposed methodology.

摘要

本文旨在为高维数据开发一种有效的无模型推断程序。我们首先通过充分降维框架重新构建假设检验问题。借助新的重构方法,我们提出了一种新的检验统计量,并表明其渐近分布是自由度不依赖于未知总体分布的分布。我们进一步在局部备择假设下进行功效分析。此外,我们研究如何控制所提出的相关检验的错误发现率,以便在无模型框架下识别重要预测变量。为此,我们提出了一种多重检验程序并建立了其理论保证。进行了蒙特卡罗模拟研究以评估所提出检验的性能,并使用一个真实数据集的实证分析来说明所提出的方法。

相似文献

1
Model-Free Statistical Inference on High-Dimensional Data.高维数据的无模型统计推断
J Am Stat Assoc. 2025;120(549):186-197. doi: 10.1080/01621459.2024.2310314. Epub 2024 Mar 8.

本文引用的文献

1
Testing and Confidence Intervals for High Dimensional Proportional Hazards Model.高维比例风险模型的检验与置信区间
J R Stat Soc Series B Stat Methodol. 2017 Nov;79(5):1415-1437. doi: 10.1111/rssb.12224. Epub 2016 Dec 26.
3
TEST OF SIGNIFICANCE FOR HIGH-DIMENSIONAL LONGITUDINAL DATA.高维纵向数据的显著性检验
Ann Stat. 2020 Oct;48(5):2622-2645. doi: 10.1214/19-aos1900. Epub 2020 Sep 19.
8
Variable Selection via Partial Correlation.通过偏相关进行变量选择。
Stat Sin. 2017 Jul;27(3):983-996. doi: 10.5705/ss.202015.0473.
9
Quantile Regression for Analyzing Heterogeneity in Ultra-high Dimension.用于分析超高维异质性的分位数回归
J Am Stat Assoc. 2012 Mar 1;107(497):214-222. doi: 10.1080/01621459.2012.656014. Epub 2012 Jun 11.
10
VARIABLE SELECTION IN NONPARAMETRIC ADDITIVE MODELS.非参数加法模型中的变量选择
Ann Stat. 2010 Aug 1;38(4):2282-2313. doi: 10.1214/09-AOS781.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验