Wu Jiahao, You Hengxu, Du Jing
Informatics, Cobots and Intelligent Construction Lab, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, United States.
Front Artif Intell. 2025 Jun 26;8:1585629. doi: 10.3389/frai.2025.1585629. eCollection 2025.
This paper proposes that Artificial Intelligence (AI) progresses through several overlapping generations: AI 1.0 (Information AI), AI 2.0 (Agentic AI), AI 3.0 (Physical AI), and a speculative AI 4.0 (Conscious AI). Each AI generation is driven by shifting priorities among algorithms, computing power, and data. AI 1.0 accompanied breakthroughs in pattern recognition and information processing, fueling advances in computer vision, natural language processing, and recommendation systems. AI 2.0 is built on these foundations through real-time decision-making in digital environments, leveraging reinforcement learning and adaptive planning for agentic AI applications. AI 3.0 extended intelligence into physical contexts, integrating robotics, autonomous vehicles, and sensor-fused control systems to act in uncertain real-world settings. Building on these developments, the proposed AI 4.0 puts forward the bold vision of self-directed AI capable of setting its own goals, orchestrating complex training regimens, and possibly exhibiting elements of machine consciousness. This paper traces the historical foundations of AI across roughly 70 years, mapping how changes in technological bottlenecks from algorithmic innovation to high-performance computing to specialized data have stimulated each generational leap. It further highlights the ongoing synergies among AI 1.0, 2.0, 3.0, and 4.0, and explores the ethical, regulatory, and philosophical challenges that arise when artificial systems approach (or aspire to) human-like autonomy. Ultimately, understanding these evolutions and their interdependencies is pivotal for guiding future research, crafting responsible governance, and ensuring that AI's transformative potential benefits society.
本文提出,人工智能(AI)的发展历经了几个相互重叠的阶段:AI 1.0(信息人工智能)、AI 2.0(智能体人工智能)、AI 3.0(物理人工智能),以及推测中的AI 4.0(有意识人工智能)。每一代人工智能都是由算法、计算能力和数据之间不断变化的优先级驱动的。AI 1.0伴随着模式识别和信息处理方面的突破,推动了计算机视觉、自然语言处理和推荐系统的进步。AI 2.0在这些基础上,通过数字环境中的实时决策构建而成,利用强化学习和自适应规划来实现智能体人工智能应用。AI 3.0将智能扩展到物理环境中,整合机器人技术、自动驾驶车辆和传感器融合控制系统,以便在不确定的现实世界环境中运行。基于这些发展,所提出的AI 4.0提出了一个大胆的愿景,即自我导向的人工智能能够设定自己的目标、精心安排复杂的训练方案,并可能展现出机器意识的元素。本文追溯了大约70年来人工智能的历史基础,描绘了从算法创新到高性能计算再到专用数据等技术瓶颈的变化如何推动了每一次代际飞跃。它还进一步强调了AI 1.0、2.0、3.0和4.0之间正在进行的协同作用,并探讨了当人工系统接近(或渴望)类人自主性时出现的伦理、监管和哲学挑战。最终,理解这些演变及其相互依存关系对于指导未来研究、制定负责任的治理措施以及确保人工智能的变革潜力造福社会至关重要。