Suppr超能文献

ESKAPE病原体中的生物膜分散模式。

Biofilm-dispersal patterns in ESKAPE pathogens.

作者信息

Sahu Abhijeet, Jain Sejal, Junghare Mrunalini, Mishra Ankita, Ruhal Rohit

机构信息

School of Bio Sciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India.

出版信息

Arch Microbiol. 2025 Jul 11;207(9):194. doi: 10.1007/s00203-025-04394-0.

Abstract

Biofilm formation is now universal behavior of microbes to protect themselves from harsh environment. For ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumanii, Pseudomonas aeruginosa and Enterobacter) pathogens it is one of the strategies to deal with antibiotic tolerance. Biofilms formation involves following major steps initial adhesion of planktonic cells, microcolony formation, biofilm maturation, and finally dispersal. In recent, interest of researchers to understand biofilm dispersal is considered important as it can make us to recognize infection dynamics, antibiofilm strategies, bacterial ecology and antibiotic resistance. A widely supported strategy for combating biofilms involves promoting their dispersal followed by the application of antibiotic therapy to enhance treatment efficacy. But different molecular studies regarding transition of bacteria to biofilms and back to dispersal have highlighted unique physiology and phenotype which might impact treatment strategies. For example, enzymatic degradation using Dispersin B or DNase I have been shown to decrease biofilm mass by over 70% in S. aureus and P. aeruginosa models, significantly increasing antibiotic susceptibility. Similarly, in E. faecalis, combining proteases with antibiotics has demonstrated up to 3-log reductions in viable biofilm cells. Thus, we discuss how native dispersal cues helps the cells in biofilms to decide for dispersal, while how matrix degradation-based dispersal can develop antibiofilm strategies. Considering ESKAPE as priority pathogens and known for biofilm formation hence we discuss patterns of dispersal focused on them only. We believe dispersing biofilms by targeting biofilm matrix components have much potential for future treatments as signaling cues may generate virulent phenotype.

摘要

生物膜形成是微生物保护自身免受恶劣环境影响的普遍行为。对于ESKAPE(粪肠球菌、金黄色葡萄球菌、肺炎克雷伯菌、鲍曼不动杆菌、铜绿假单胞菌和肠杆菌)病原体而言,这是应对抗生素耐受性的策略之一。生物膜形成涉及浮游细胞的初始黏附、微菌落形成、生物膜成熟,以及最终的分散等主要步骤。近年来,研究人员对理解生物膜分散的兴趣被认为很重要,因为它能使我们认识感染动态、抗生物膜策略、细菌生态学和抗生素耐药性。一种广泛支持的对抗生物膜的策略是促进其分散,随后应用抗生素疗法以提高治疗效果。但关于细菌向生物膜转变以及再回到分散状态的不同分子研究突出了独特的生理学和表型,这可能会影响治疗策略。例如,在金黄色葡萄球菌和铜绿假单胞菌模型中,使用分散素B或脱氧核糖核酸酶I进行酶促降解已显示可使生物膜质量减少70%以上,显著提高抗生素敏感性。同样,在粪肠球菌中,将蛋白酶与抗生素联合使用已证明可使生物膜活细胞数量减少多达3个对数级。因此,我们讨论天然分散信号如何帮助生物膜中的细胞决定分散,以及基于基质降解的分散如何制定抗生物膜策略。鉴于ESKAPE是优先病原体且以形成生物膜而闻名,因此我们仅讨论聚焦于它们的分散模式。我们认为,通过靶向生物膜基质成分来分散生物膜在未来治疗中具有很大潜力,因为信号线索可能会产生毒性表型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验