Suppr超能文献

加强公共卫生监测:SARS-CoV-2基因组测序中特定平台和混合组装方法的比较研究

Enhancing public health surveillance: a comparative study of platform-specific and hybrid assembly approaches in SARS-CoV-2 genome sequencing.

作者信息

Coşgun Yasemin, Yalçın Süleyman, Dedeoğlu Ege, Ünal Gültekin, Kopp Katharina, Musul Biran, Sağtaş Ekrem, Raftery Philomena, Korukluoğlu Gülay, Kaygusuz Sedat

机构信息

The National Virology Reference Laboratory, Public Health General Directorate, Ministry of Health, Ankara, Türkiye.

The Department of National Reference Laboratories and Biological Products, Public Health General Directorate, Ministry of Health, Ankara, Türkiye.

出版信息

Microb Genom. 2025 Jul;11(7). doi: 10.1099/mgen.0.001357.

Abstract

During the COVID-19 pandemic, next-generation sequencing (NGS) has been instrumental for public health laboratories in tracking severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutations and informing responses. Illumina systems and Oxford Nanopore Technologies (ONT) have been primary tools for NGS, each presenting unique advantages. The hybrid assembly (HA) approach, integrating short- and long-read sequencing methods, has been developed to improve genome accuracy by utilizing the combined advantages of both techniques. While HA has been used to enhance SARS-CoV-2 genome quality, its optimal applications for SARS-CoV-2 sequencing and surveillance have not been systematically studied. This study seeks to address this gap by evaluating the conditions under which HA improves SARS-CoV-2 genomic surveillance, analysing 192 samples using eight bioinformatics methods across both platforms. HA was evaluated against single-technology approaches for its genome assembly and mutation detection performance. While HA did not outperform single-technology methods in detecting unique mutations, it produced marginally more complete genomes than Illumina-based methods. Importantly, mutations identified by HA were consistently detected across all eight methodologies, demonstrating its reliability in mutation detection. Moreover, our research underlines the critical need for in-house validation of methods and exposes the limitations inherent in proprietary pipelines. Our findings suggest that an HA approach could be used as a quality control tool in genomic surveillance, particularly for improving low-quality ONT sequencing data by integrating high-quality Illumina sequencing data. However, implementing HA demands the presence of both sequencing platforms and additional resources, such as hands-on time, expensive sequencing reagents and bioinformatics know-how. A decision-tree analysis identified the percentage of trimmed ONT reads relative to total reads as crucial for HA success, emphasizing the significance of high-quality ONT reads. This comprehensive approach provides public health laboratories insights to refine genomic surveillance strategies for SARS-CoV-2, potentially influencing future research and response efforts.

摘要

在新冠疫情期间,新一代测序(NGS)对公共卫生实验室追踪严重急性呼吸综合征冠状病毒2(SARS-CoV-2)突变并指导应对措施起到了重要作用。Illumina系统和牛津纳米孔技术公司(ONT)的技术一直是NGS的主要工具,各有独特优势。整合短读长和长读长测序方法的混合组装(HA)方法已被开发出来,通过利用两种技术的综合优势提高基因组准确性。虽然HA已被用于提高SARS-CoV-2基因组质量,但其在SARS-CoV-2测序和监测中的最佳应用尚未得到系统研究。本研究旨在通过评估HA改善SARS-CoV-2基因组监测的条件来填补这一空白,在两个平台上使用八种生物信息学方法分析了192个样本。针对单技术方法评估了HA的基因组组装和突变检测性能。虽然HA在检测独特突变方面没有优于单技术方法,但它产生的基因组比基于Illumina的方法略为完整。重要的是,HA识别出的突变在所有八种方法中都能被一致检测到,证明了其在突变检测中的可靠性。此外,我们的研究强调了对方法进行内部验证的迫切需求,并揭示了专有流程中固有的局限性。我们的研究结果表明,HA方法可作为基因组监测中的质量控制工具,特别是通过整合高质量的Illumina测序数据来改善低质量的ONT测序数据。然而,实施HA需要同时具备两个测序平台以及额外资源,如实际操作时间、昂贵的测序试剂和生物信息学专业知识。决策树分析确定,相对于总读数而言已修剪的ONT读数百分比对HA的成功至关重要,强调了高质量ONT读数的重要性。这种综合方法为公共卫生实验室优化SARS-CoV-2基因组监测策略提供了见解,可能会影响未来的研究和应对工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8654/12244368/626767867149/mgen-11-01357-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验