Valenzuela-Reyes Marcos B, Zuñiga-Aguilar Esmeralda S, Chapa-González Christian, Castro-Carmona Javier S, Méndez-González Luis C, Álvarez-López R, Monreal-Romero Humberto, Martínez-Pérez Carlos A
Institute of Engineering and Technology, Autonomous University of the City of Juarez, Ciudad Juárez 32310, Mexico.
Computer Science Department, The University of Texas at El Paso, West University Avenue, El Paso, TX 79968, USA.
Polymers (Basel). 2025 Jun 30;17(13):1838. doi: 10.3390/polym17131838.
In recent years, there has been a surge in the extrusion-based 3D printing of materials for various biomedical applications. This work presents a novel methodology for optimizing extrusion-based 3D bioprinting of a gelatin/siloxane hybrid material for biomedical applications. A systematic approach integrating rheological characterization, computational fluid dynamics simulation (CFD), and machine-learning-based image analysis, was employed. Rheological tests revealed a shear stress of 50 Pa, a maximum viscosity of 3 × 10 Pa·s, a minimum viscosity of 0.089 Pa·s, and a shear rate of 15 rad/s (27G nozzle, 180 kPa pressure, 32 °C temperature, 30 mm/s velocity) for a BIO X bioprinter. While these parameters yielded constructs with 54.5% similarity to the CAD design, a multi-faceted optimization strategy was implemented to enhance fidelity, computational fluid dynamics simulations in SolidWorks, coupled with a custom-develop a binary classifier convolutional neuronal network for post-printing image analysis, facilitated targeted parameter refinement. Subsequent printing optimized parameters (25G nozzle, 170 kPa, 32 °C, 20 mm/s) achieved a significantly improved similarity of 92.35% CAD, demonstrating efficacy. The synergistic combination of simulation and machine learning ultimately enabled the fabrication of complex 3D constructs with a high fidelity of 94.13% CAD similarity, demonstrating the efficacy and potential of this integrated approach for advanced biofabrication.
近年来,用于各种生物医学应用的基于挤出的材料3D打印技术激增。这项工作提出了一种新颖的方法,用于优化用于生物医学应用的明胶/硅氧烷混合材料的基于挤出的3D生物打印。采用了一种将流变学表征、计算流体动力学模拟(CFD)和基于机器学习的图像分析相结合的系统方法。流变学测试显示,对于一台BIO X生物打印机,在27G喷嘴、180 kPa压力、32°C温度、30 mm/s速度下,剪切应力为50 Pa,最大粘度为3×10 Pa·s,最小粘度为0.089 Pa·s,剪切速率为15 rad/s。虽然这些参数生成的构建体与CAD设计的相似度为54.5%,但实施了多方面的优化策略以提高保真度,在SolidWorks中进行计算流体动力学模拟,并结合定制开发的用于打印后图像分析的二元分类器卷积神经网络,有助于有针对性地优化参数。随后打印优化参数(25G喷嘴、170 kPa、32°C、20 mm/s)使与CAD的相似度显著提高到92.35%,证明了其有效性。模拟和机器学习的协同组合最终实现了具有94.13% CAD相似度的高保真度复杂3D构建体的制造,证明了这种集成方法在先进生物制造中的有效性和潜力。