Suppr超能文献

StomaYOLO:一种基于多任务训练的轻量级玉米表型气孔细胞检测器

StomaYOLO: A Lightweight Maize Phenotypic Stomatal Cell Detector Based on Multi-Task Training.

作者信息

Yang Ziqi, Liao Yiran, Chen Ziao, Lin Zhenzhen, Huang Wenyuan, Liu Yanxi, Liu Yuling, Fan Yamin, Xu Jie, Xu Lijia, Mu Jiong

机构信息

College of Information Engineering, Sichuan Agricultural University, Ya'an 625000, China.

Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.

出版信息

Plants (Basel). 2025 Jul 6;14(13):2070. doi: 10.3390/plants14132070.

Abstract

Maize ( L.), a vital global food crop, relies on its stomatal structure for regulating photosynthesis and responding to drought. Conventional manual stomatal detection methods are inefficient, subjective, and inadequate for high-throughput plant phenotyping research. To address this, we curated a dataset of over 1500 maize leaf epidermal stomata images and developed a novel lightweight detection model, StomaYOLO, tailored for small stomatal targets and subtle features in microscopic images. Leveraging the YOLOv11 framework, StomaYOLO integrates the Small Object Detection layer P2, the dynamic convolution module, and exploits large-scale epidermal cell features to enhance stomatal recognition through auxiliary training. Our model achieved a remarkable 91.8% mean average precision (mAP) and 98.5% precision, surpassing numerous mainstream detection models while maintaining computational efficiency. Ablation and comparative analyses demonstrated that the Small Object Detection layer, dynamic convolutional module, multi-task training, and knowledge distillation strategies substantially enhanced detection performance. Integrating all four strategies yielded a nearly 9% mAP improvement over the baseline model, with computational complexity under 8.4 GFLOPS. Our findings underscore the superior detection capabilities of StomaYOLO compared to existing methods, offering a cost-effective solution that is suitable for practical implementation. This study presents a valuable tool for maize stomatal phenotyping, supporting crop breeding and smart agriculture advancements.

摘要

玉米(L.)作为一种重要的全球粮食作物,依靠其气孔结构来调节光合作用并应对干旱。传统的手动气孔检测方法效率低下、主观且不适用于高通量植物表型研究。为了解决这个问题,我们整理了一个包含1500多张玉米叶片表皮气孔图像的数据集,并开发了一种新颖的轻量级检测模型StomaYOLO,该模型专为显微图像中的小气孔目标和细微特征量身定制。利用YOLOv11框架,StomaYOLO集成了小目标检测层P2和动态卷积模块,并利用大规模表皮细胞特征通过辅助训练来增强气孔识别能力。我们的模型实现了91.8%的平均精度均值(mAP)和98.5%的精度,超过了众多主流检测模型,同时保持了计算效率。消融分析和对比分析表明,小目标检测层、动态卷积模块、多任务训练和知识蒸馏策略显著提高了检测性能。整合所有这四种策略使mAP比基线模型提高了近9%,计算复杂度低于8.4 GFLOPS。我们的研究结果强调了StomaYOLO相对于现有方法具有卓越的检测能力,提供了一种适合实际应用的经济高效的解决方案。这项研究为玉米气孔表型分析提供了一个有价值的工具,支持作物育种和智慧农业的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fe4/12252304/c0f86d43751d/plants-14-02070-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验