Suppr超能文献

基于多任务蒸馏学习的番茄叶病识别

Tomato leaf disease recognition based on multi-task distillation learning.

作者信息

Liu Bo, Wei Shusen, Zhang Fan, Guo Nawei, Fan Hongyu, Yao Wei

机构信息

College of Information Science and Technology, Hebei Agricultural University, Baoding, China.

Hebei Key Laboratory of Agricultural Big Data, Baoding, China.

出版信息

Front Plant Sci. 2024 Jan 30;14:1330527. doi: 10.3389/fpls.2023.1330527. eCollection 2023.

Abstract

INTRODUCTION

Tomato leaf diseases can cause major yield and quality losses. Computer vision techniques for automated disease recognition show promise but face challenges like symptom variations, limited labeled data, and model complexity.

METHODS

Prior works explored hand-crafted and deep learning features for tomato disease classification and multi-task severity prediction, but did not sufficiently exploit the shared and unique knowledge between these tasks. We present a novel multi-task distillation learning (MTDL) framework for comprehensive diagnosis of tomato leaf diseases. It employs knowledge disentanglement, mutual learning, and knowledge integration through a multi-stage strategy to leverage the complementary nature of classification and severity prediction.

RESULTS

Experiments show our framework improves performance while reducing model complexity. The MTDL-optimized EfficientNet outperforms single-task ResNet101 in classification accuracy by 0.68% and severity estimation by 1.52%, using only 9.46% of its parameters.

DISCUSSION

The findings demonstrate the practical potential of our framework for intelligent agriculture applications.

摘要

引言

番茄叶部病害会导致严重的产量和品质损失。用于自动病害识别的计算机视觉技术展现出了前景,但面临症状变化、标注数据有限以及模型复杂等挑战。

方法

先前的研究探索了用于番茄病害分类和多任务严重程度预测的手工制作特征和深度学习特征,但没有充分利用这些任务之间的共享和独特知识。我们提出了一种新颖的多任务蒸馏学习(MTDL)框架,用于番茄叶部病害的综合诊断。它通过多阶段策略采用知识解缠、相互学习和知识整合,以利用分类和严重程度预测的互补性质。

结果

实验表明,我们的框架在降低模型复杂度的同时提高了性能。经过MTDL优化的EfficientNet在分类准确率上比单任务ResNet101高出0.68%,在严重程度估计上高出1.52%,而仅使用其9.46%的参数。

讨论

研究结果证明了我们的框架在智能农业应用中的实际潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b07/10862124/57ec4d917d40/fpls-14-1330527-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验