Chen Wen-Jie, Liu Yang-Chao, Wang Zhen-Yu, Gu Lin, Shen Yi, Ma Hong-Ping
Institute of Wide Bandgap Semiconductor Materials and Devices, Research Institute of Fudan University in Ningbo, Ningbo 315327, China.
Institute of Wide Bandgap Semiconductors and Future Lighting, Academy for Engineering & Technology, Fudan University, Shanghai 200433, China.
Nanomaterials (Basel). 2025 Jun 20;15(13):958. doi: 10.3390/nano15130958.
Silicon oxynitride (SiON, hereafter denoted as SiON) thin films represent an intermediate phase between silicon dioxide (SiO) and silicon nitride (SiN). Through systematic compositional ratio adjustments, the refractive index can be precisely tuned across a wide range from 1.45 to 2.3. However, the underlying mechanism governing the influence of elemental composition on film structural quality remains insufficiently understood. To address this knowledge gap, we systematically investigate the effects of key industrial plasma-enhanced chemical vapor deposition (PECVD) parameters-including precursor gas selection and flow rate ratios-on SiON film properties. Our experimental measurements reveal that stoichiometric SiON (x = y) achieves a minimum surface roughness of 0.18 nm. As oxygen content decreases and nitrogen content increases, progressive replacement of Si-O bonds by Si-N bonds correlates with increased structural defect density within the film matrix. Capacitance-voltage (C-V) characterization demonstrates a corresponding enhancement in device capacitance following these compositional modifications. Recent studies confirm that controlled modulation of film stoichiometry enables precise tailoring of dielectric properties and capacitive behavior, as demonstrated in SiON-based power electronics, thereby advancing applications in related fields.
氮氧化硅(SiON,以下简称SiON)薄膜代表了二氧化硅(SiO₂)和氮化硅(SiN)之间的中间相。通过系统地调整成分比例,可以在1.45至2.3的宽范围内精确调节折射率。然而,关于元素组成对薄膜结构质量影响的潜在机制仍未得到充分理解。为了填补这一知识空白,我们系统地研究了关键的工业等离子体增强化学气相沉积(PECVD)参数——包括前驱体气体选择和流速比——对SiON薄膜性能的影响。我们的实验测量表明,化学计量比的SiON(x = y)实现了0.18 nm的最小表面粗糙度。随着氧含量降低和氮含量增加,Si - O键被Si - N键逐渐取代与薄膜基质内结构缺陷密度的增加相关。电容 - 电压(C - V)表征表明,在这些成分改性后,器件电容相应增强。最近的研究证实,如在基于SiON的电力电子器件中所展示的那样,对薄膜化学计量比的可控调制能够精确调整介电性能和电容行为,从而推动相关领域的应用。