Ueno Hikaru, Uchida Kotaro, Kawashima Honoka, Hommo Hiroto, Sugawara Takuya, Minegishi Shintaro, Chen Lin, Sasaki-Nakashima Rie, Kino Tabito, Arakawa Kentaro, Sugiyama Michiko, Tamura Koichi, Hibi Kiyoshi, Ishigami Tomoaki
Department of Cardiology, Yokohama City University, Kanagawa 236-0004, Japan.
Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, Long Mian Avenue 109 Jiangning, Nanjing 210029, China.
J Clin Med. 2025 Jul 3;14(13):4722. doi: 10.3390/jcm14134722.
Cardiovascular diseases (CVDs) remain a leading cause of morbidity and mortality, despite advances in treatment. Early detection of vascular aging is critical, as preclinical atherosclerosis often remains undiagnosed. AI-determined vascular age, originally developed using carotid-femoral pulse wave velocity (cf-PWV), may help to identify individuals at elevated risk. This study aimed to evaluate the clinical utility of an alternative AI-determined vascular age model based on the arterial velocity pulse index (AVI) and arterial pressure volume index (API) in a Japanese hospital-based cohort. This retrospective, exploratory study analyzed electronic health records of 408 patients from Yokohama City University Hospital. This study was approved by the Clinical Research Ethics Committee (approval numbers: B180300040, F240500007), and patient consent was obtained through an opt-out process. AI-determined vascular age was estimated using a Generalized Additive Model (GAM) with backward stepwise regression, substituting cf-PWV with AVI and API. Correlations with chronological age were assessed, and comparisons of cardiovascular and renal function markers were performed across age-stratified groups. AI-determined vascular age showed a strong correlation with chronological age ( < 0.05). Significant differences were observed in cardiac diastolic function parameters, B-type natriuretic peptide (BNP), and estimated glomerular filtration rate (eGFR) between the highest and lowest quintiles of AI-determined vascular age. AI-determined vascular age using AVI and API appears to be a feasible surrogate for cf-PWV in clinical settings. This index may aid in stratifying vascular aging and identifying individuals who could benefit from early cardiovascular risk management.
尽管治疗方法有所进步,但心血管疾病(CVDs)仍然是发病和死亡的主要原因。血管老化的早期检测至关重要,因为临床前动脉粥样硬化往往仍未被诊断出来。最初使用颈股脉搏波速度(cf-PWV)开发的人工智能确定的血管年龄,可能有助于识别风险升高的个体。本研究旨在评估基于动脉速度脉搏指数(AVI)和动脉压力容积指数(API)的另一种人工智能确定的血管年龄模型在日本一家医院队列中的临床实用性。这项回顾性探索性研究分析了横滨市立大学医院408例患者的电子健康记录。本研究获得了临床研究伦理委员会的批准(批准号:B180300040、F240500007),并通过退出程序获得了患者同意。使用广义相加模型(GAM)和向后逐步回归估计人工智能确定的血管年龄,用AVI和API替代cf-PWV。评估与实际年龄的相关性,并在年龄分层组中比较心血管和肾功能标志物。人工智能确定的血管年龄与实际年龄显示出强烈的相关性(<0.05)。在人工智能确定的血管年龄的最高和最低五分位数之间,观察到心脏舒张功能参数、B型利钠肽(BNP)和估计肾小球滤过率(eGFR)存在显著差异。在临床环境中,使用AVI和API确定的人工智能血管年龄似乎是cf-PWV的可行替代指标。该指数可能有助于对血管老化进行分层,并识别可能从早期心血管风险管理中受益的个体。