Bissoli Gaetano, Palomino-Schätzlein Martina, Planes María Dolores, Renard Joan, Krätschmer Triana, Silva-Dias Claudia, González-Bermúdez María R, Lozano-Juste Jorge, Liu Lingyun, Wang Guodong, Bueso Eduardo
Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, Spain.
ProtoQSAR S.L., Paterna, Spain.
Physiol Plant. 2025 Jul-Aug;177(4):e70395. doi: 10.1111/ppl.70395.
The fast evaluation of seed performance is crucial for the agricultural industry. In this work, we apply NMR to identify specific metabolites that are related to the germination capacity of seeds. As our results show, NMR is a fast method with great potential to discover new accumulated metabolites during seed ageing and to predict the germination of a seed batch. In an initial study, we compared the metabolomic profile of Arabidopsis fresh and naturally aged seeds applying Partial Least Square Discriminant Analysis (OPLS-DA) and identified several sugars, amino acids, lactate, and methyl-nicotinate (MeNA), among others, as differentially accumulated metabolites in aged versus fresh seeds. Furthermore, we used our NMR metabolomics data to predict seed viability. A multivariate Partial Least Squares regression (PLS) analysis showed a direct correlation between the metabolomic profile and the seed germination rate, which allows for the prediction of seed germination. We then applied the same approach to natural and artificially aged wheat seeds, where we identified samples with high (91%) and low (0%) germination with 0.92 accuracy for artificially aged seeds and 0.80 accuracy for naturally aged seeds. In addition, we found a decrease in glucose and an increase in the dimethylamine content in wheat aged seeds, like in Arabidopsis. MeNA, a metabolite accumulated in aged Arabidopsis seeds but not statistically relevant in wheat, inhibited germination in both species via an ABA-independent mechanism involving the repression of the transcription of PARP3 and ERF72 genes in both species.
种子性能的快速评估对农业产业至关重要。在这项工作中,我们应用核磁共振(NMR)来鉴定与种子发芽能力相关的特定代谢物。正如我们的结果所示,NMR是一种快速的方法,在发现种子老化过程中新积累的代谢物以及预测一批种子的发芽方面具有巨大潜力。在一项初步研究中,我们应用偏最小二乘判别分析(OPLS-DA)比较了拟南芥新鲜种子和自然老化种子的代谢组学图谱,并鉴定出几种糖、氨基酸、乳酸和甲基烟碱(MeNA)等,作为老化种子与新鲜种子中差异积累的代谢物。此外,我们利用NMR代谢组学数据预测种子活力。多元偏最小二乘回归(PLS)分析表明代谢组学图谱与种子发芽率之间存在直接相关性,这使得能够预测种子发芽。然后,我们将相同的方法应用于自然老化和人工老化的小麦种子,在那里我们鉴定出人工老化种子发芽率高(91%)和低(0%)的样本,准确率为0.92,自然老化种子的准确率为0.80。此外,我们发现小麦老化种子中的葡萄糖含量降低,二甲胺含量增加,与拟南芥情况相同。MeNA是一种在老化拟南芥种子中积累但在小麦中无统计学相关性的代谢物,它通过一种不依赖脱落酸(ABA)的机制抑制这两个物种的发芽,该机制涉及抑制这两个物种中PARP3和ERF72基因的转录。