McConnell Gail, Rooney Liam M, Sandison Mairi E, Hoskisson Paul A, Baxter Katherine J
Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
Department of Biomedical Engineering, Wolfson Centre, University of Strathclyde, Glasgow, UK.
J Med Microbiol. 2025 Jul;74(7). doi: 10.1099/jmm.0.002047.
Healthcare-associated infections (HAIs) significantly contribute to the burden of antimicrobial resistance. A major factor in HAIs is the colonization of indwelling medical devices by biofilm-forming opportunistic pathogens such as and . These organisms frequently co-infect, resulting in synergistic interactions with enhanced virulence and resistance to treatment. and readily form dual-species biofilms on silicone elastomers, a commonly used medical device material, yet the colonization phenotypes of these organisms on such surfaces remain poorly understood. We aimed to develop a simple, optically tractable model to mimic the colonization of indwelling medical devices to investigate and biofilm formation. The system utilizes discs of a silicone elastomer embedded in agar, reflecting device-associated conditions and enabling high-resolution imaging of biofilms formed by and co-cultures. Initial results using the silicone elastomer colonization model reveal robust biofilm formation. These biofilms exhibited morphological differences between dual-species biofilms formed by co-cultures with either yeast- or hyphal-form indicating the impact of differing cell morphotypes in biofilm-associated medical device colonization on silicone elastomers. Quantification of biofilm formation by crystal violet staining provided further validation of the system. These findings underscore the importance of developing tools for biofilm study which more closely resemble the infectious microenvironment, with our work detailing such a system which can be employed in further study to improve strategies against device-related HAIs.
医疗保健相关感染(HAIs)显著加重了抗菌药物耐药性的负担。HAIs的一个主要因素是生物膜形成的机会性病原体(如[具体病原体1]和[具体病原体2])在留置医疗器械上的定植。这些微生物经常共同感染,导致具有增强毒力和治疗抗性的协同相互作用。[具体病原体1]和[具体病原体2]很容易在硅橡胶弹性体(一种常用的医疗器械材料)上形成双物种生物膜,但这些微生物在这种表面上的定植表型仍知之甚少。我们旨在开发一个简单的、光学上易于处理的模型来模拟留置医疗器械的定植,以研究[具体病原体1]和[具体病原体2]的生物膜形成。该系统利用嵌入琼脂中的硅橡胶弹性体圆盘,反映与器械相关的条件,并能够对由[具体病原体1]和[具体病原体2]共培养形成的生物膜进行高分辨率成像。使用硅橡胶弹性体定植模型的初步结果显示形成了强大的生物膜。这些生物膜在与酵母形式或菌丝形式的[具体病原体2]共培养形成的双物种生物膜之间表现出形态差异,表明不同的[具体病原体2]细胞形态型对硅橡胶弹性体上与生物膜相关的医疗器械定植的影响。通过结晶紫染色对生物膜形成进行定量分析进一步验证了该系统。这些发现强调了开发更类似于感染微环境的生物膜研究工具的重要性,我们的工作详细介绍了这样一个系统,可用于进一步研究,以改进针对与器械相关的HAIs的策略。