Suppr超能文献

发现一种易于异源表达的来自深海的核酮糖-1,5-二磷酸羧化酶/加氧酶,具有捕获二氧化碳的潜力。

Discovery of a readily heterologously expressed Rubisco from the deep sea with potential for CO capture.

作者信息

Zhang Junli, Liu Guoxia, Carvajal Alonso I, Wilson Robert H, Cai Zhen, Li Yin

机构信息

CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.

University of the Chinese Academy of Sciences, Beijing, China.

出版信息

Bioresour Bioprocess. 2021 Sep 7;8(1):86. doi: 10.1186/s40643-021-00439-6.

Abstract

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the key CO-fixing enzyme in photosynthesis, is notorious for its low carboxylation. We report a highly active and assembly-competent Form II Rubisco from the endosymbiont of a deep-sea tubeworm Riftia pachyptila (RPE Rubisco), which shows a 50.5% higher carboxylation efficiency than that of a high functioning Rubisco from Synechococcus sp. PCC7002 (7002 Rubisco). It is a simpler hexamer with three pairs of large subunit homodimers around a central threefold symmetry axis. Compared with 7002 Rubisco, it showed a 3.6-fold higher carbon capture efficiency in vivo using a designed CO capture model. The simple structure, high carboxylation efficiency, easy heterologous soluble expression/assembly make RPE Rubisco a ready-to-deploy enzyme for CO capture that does not require complex co-expression of chaperones. The chemosynthetic CO fixation machinery of chemolithoautotrophs, CO-fixing endosymbionts, may be more efficient than previously realized with great potential for next-generation microbial CO sequestration platforms.

摘要

核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)是光合作用中关键的二氧化碳固定酶,其羧化活性低,声名狼藉。我们报道了一种来自深海管虫巨型硫黄虫(Riftia pachyptila)内共生体的高活性且具备组装能力的II型Rubisco(RPE Rubisco),它的羧化效率比来自聚球藻属PCC7002(7002 Rubisco)的高效Rubisco高出50.5%。它是一种更简单的六聚体,围绕中心三重对称轴有三对大亚基同型二聚体。与7002 Rubisco相比,使用设计的二氧化碳捕获模型,它在体内的碳捕获效率高出3.6倍。RPE Rubisco结构简单、羧化效率高、易于异源可溶性表达/组装,使其成为一种无需复杂伴侣共表达即可用于二氧化碳捕获的现成酶。化能自养生物、二氧化碳固定内共生体的化学合成二氧化碳固定机制可能比以前认识到的更高效,在下一代微生物二氧化碳封存平台方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/564b/10992382/abedf8aad193/40643_2021_439_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验