Huang Yintan, Gong Kai, Liu Xiaoxuan, Hu Shuangshuang, Xie Yu, Xie Chunjie, Lei Lan, Li Hui
School of Chemistry and Chemical Engineering, and Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022, China.
ACS Omega. 2025 Jun 23;10(26):27894-27903. doi: 10.1021/acsomega.5c01078. eCollection 2025 Jul 8.
Developing mechanically robust hydrogels with low ice adhesion and anti-icing durability in low-temperature environments (≤ -20 °C) remains a persistent challenge. In this study, a dual-network organohydrogel (PAD) was synthesized through a facile one-pot copolymerization of acrylamide (AM), and [2-(Methacryloyloxy)-ethyl]-trimethylammonium chloride (DML) dissolved in poly-(vinyl alcohol) (PVA) aqueous solution, followed by solvent exchange in a mixed solvent of dl-1,2-Isopropylideneglycerol-(ACM) and water (HO). This unique solvent exchange enhances chain entanglement within the interpenetrating dual networks and establishes robust hydrogen bonding interactions. The optimized organohydrogel exhibits a mechanical strength of 0.8 MPa and an elongation at break of 450%, significantly surpassing the mechanical properties of existing hydrogels, which demonstrate a tensile strength of 0.28 MPa and an elongation at break of 390%. Furthermore, the incorporation of DML and ACM bestows the organohydrogel with remarkable ice-phobicity, achieving an extremely low ice adhesion strength of 2.14 ± 1.2 kPa at -20 °C. This performance is attributed to the synergistic effects of a hydrated layer formed by interactions between water and the chloride ions from DML, along with the lubricating layer provided by ACM on the gel surface. Notably, the ice adhesion strength of the organohydrogels increased by less than 3 kPa after 30 cyclic surface mechanical abrasion tests, underscoring their excellent friction resistance and anti-icing durability. This study presents a novel approach for the practical application of anti-icing materials in technology.
开发在低温环境(≤ -20 °C)下具有低冰附着力和抗冰耐久性的机械坚固水凝胶仍然是一个长期挑战。在本研究中,通过将丙烯酰胺(AM)和溶解在聚乙烯醇(PVA)水溶液中的[2-(甲基丙烯酰氧基)-乙基]-三甲基氯化铵(DML)进行简便的一锅法共聚,然后在dl-1,2-异丙叉甘油-(ACM)和水(HO)的混合溶剂中进行溶剂交换,合成了一种双网络有机水凝胶(PAD)。这种独特的溶剂交换增强了互穿双网络内的链缠结,并建立了强大的氢键相互作用。优化后的有机水凝胶表现出0.8 MPa的机械强度和450%的断裂伸长率,显著超过了现有水凝胶的机械性能,现有水凝胶的拉伸强度为0.28 MPa,断裂伸长率为390%。此外,DML和ACM的加入赋予了有机水凝胶显著的疏冰性,在-20 °C时实现了2.14 ± 1.2 kPa的极低冰附着力。这种性能归因于水与DML中的氯离子相互作用形成的水合层以及ACM在凝胶表面提供的润滑层的协同作用。值得注意的是,经过30次循环表面机械磨损测试后,有机水凝胶的冰附着力强度增加不到3 kPa,突出了它们优异的耐摩擦性和抗冰耐久性。本研究为防冰材料在技术中的实际应用提出了一种新方法。