Gao Ming, Tu Chaofan, Liu Miaomiao, Chen Jiandong, Chen Xingyu, Zou Hong, Shiu Tong Thomas, Chen Long, Fu Shuke
School of Public Administration, Southwestern University of Finance and Economics, Chengdu, China.
School of Computer Science, Chengdu University, Chengdu, China.
Sci Data. 2025 Jul 14;12(1):1217. doi: 10.1038/s41597-025-05461-3.
The top-down method is widely used to estimate China's CO emissions at the county level. However, studies have relied on a single indicator of regional total nighttime light brightness as an instrumental variable for prediction, leading to the assumption that there is a positive correlation between CO emissions and total nighttime light brightness in all regions within the same province. This assumption overlooks other heterogeneous relationships and does not correspond to reality. Therefore, this study constructed a dataset of potential feature variables based on multisource data (improved and calibrated nighttime light data, urban and rural human settlement data, and socioeconomic indicator data based on statistical yearbooks). After the main feature variables were identified, a hybrid regression algorithm combining deep neural networks and CatBoost was constructed to generate instrumental variable for predicting CO emissions. Compared with the total nighttime brightness, it has a stronger linear relationship with CO emissions. Using the top-down algorithm, we estimated China's monthly CO emissions at the county level from 2013 to 2021. This dataset provides a solid foundation for predicting the achievement of China's county-level "dual carbon" strategy. The methods used in this study can be generalized to other global regions.
自上而下的方法被广泛用于估算中国县级层面的一氧化碳排放量。然而,以往研究依赖单一的区域夜间总灯光亮度指标作为预测的工具变量,导致假定同一省份内所有地区的一氧化碳排放量与夜间总灯光亮度之间存在正相关关系。这一假设忽略了其他异质性关系,与实际情况不符。因此,本研究基于多源数据(经过改进和校准的夜间灯光数据、城乡人类住区数据以及基于统计年鉴的社会经济指标数据)构建了潜在特征变量数据集。在确定主要特征变量后,构建了一种结合深度神经网络和CatBoost的混合回归算法来生成用于预测一氧化碳排放量的工具变量。与夜间总亮度相比,它与一氧化碳排放量具有更强的线性关系。利用自上而下的算法,我们估算了2013年至2021年中国县级层面的月度一氧化碳排放量。该数据集为预测中国县级“双碳”战略的实现提供了坚实基础。本研究中使用的方法可推广到全球其他地区。