Rufibach Kaspar, Burger Hans Ulrich, Abt Markus
Department of Biostatistics, Hoffmann-La Roche Ltd, Basel, Switzerland.
Pharm Stat. 2016 Sep;15(5):438-46. doi: 10.1002/pst.1764. Epub 2016 Jul 21.
Bayesian predictive power, the expectation of the power function with respect to a prior distribution for the true underlying effect size, is routinely used in drug development to quantify the probability of success of a clinical trial. Choosing the prior is crucial for the properties and interpretability of Bayesian predictive power. We review recommendations on the choice of prior for Bayesian predictive power and explore its features as a function of the prior. The density of power values induced by a given prior is derived analytically and its shape characterized. We find that for a typical clinical trial scenario, this density has a u-shape very similar, but not equal, to a β-distribution. Alternative priors are discussed, and practical recommendations to assess the sensitivity of Bayesian predictive power to its input parameters are provided. Copyright © 2016 John Wiley & Sons, Ltd.
贝叶斯预测能力,即关于真实潜在效应大小的先验分布的功效函数的期望,在药物研发中经常被用于量化临床试验成功的概率。选择先验对于贝叶斯预测能力的性质和可解释性至关重要。我们回顾了关于贝叶斯预测能力先验选择的建议,并探讨了其作为先验函数的特征。通过解析推导得出给定先验所诱导的功效值密度,并对其形状进行了刻画。我们发现,对于典型的临床试验场景,这种密度呈U形,与β分布非常相似,但并不相同。文中还讨论了替代先验,并提供了评估贝叶斯预测能力对其输入参数敏感性的实用建议。版权所有© 2016约翰·威利父子有限公司。