Aydin Sabrin, Soares Ana Prates, Fischer Heilwig, Knecht Raphael Silvan, Kopp Alexander, Schmidt-Bleek Katharina, Heiland Max, Rendenbach Carsten
Department of Oral and Maxillofacial Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany.
Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany.
Biomed Eng Online. 2025 Jul 15;24(1):90. doi: 10.1186/s12938-025-01413-5.
Bioresorbable implants significantly advance orthopedics and regenerative medicine, offering advantages over permanent implants for bone regeneration. They eliminate the need for secondary surgery and reduce long-term risks associated with permanent implants. Magnesium-based alloys are particularly promising, as their biocompatibility and mechanical properties are similar to bone. However, the degradation of magnesium is associated with physiological challenges that need to be better understood.
The primary focus of this in vitro study was to investigate the osteogenic and immunomodulatory potential of WE43, a promising magnesium alloy tailored for clinical applications, and to test its osteogenic effect when a plasma electrolytic oxidation (PEO) surface modification is added.
The present data revealed that WE43 implants show excellent biocompatibility and bioactivity, promoting the viability of osteoblasts and enhancing the expression of osteogenic genes, specially Alpl and Tnfrsf11b. PEO surface modification did not further enhance osteogenic differentiation. Notably, WE43 implants elicited a minimal inflammatory response in RAW264.7 murine macrophages, indicating good biocompatibility. Furthermore, supernatant collected from RAW264.7 murine macrophages cultured with WE43 implants stimulated the Alpl expression in MC3T3-E1 murine osteoblasts, demonstrating their potential osteoimmune effect.
The present findings highlight the promising potential of WE43 alloy as a biocompatible and osteoinductive biomaterial for bone regeneration applications. Their osteoimmune modulation further demonstrates the advantages of using this alloy system. Specifically, a minimal, well-controlled inflammatory response can promote a faster transition to the bone remodeling phase, leading to quicker and more effective bone regeneration.
A comprehensive in vitro investigation was conducted to assess the impact of both WE43 and WE43 PEO on the viability, Alkaline Phosphatase (ALP) expression, osteogenic gene expression (Alpl, Tnfrsf11b, and Bglap), and mineralization of MC3T3-E1 murine osteoblasts. The osteoimmunomodulatory response to WE43 was evaluated using RAW264.7 murine macrophages by assessing their response to direct contact with the alloy.
可生物吸收植入物显著推动了骨科和再生医学的发展,与永久性植入物相比,在骨再生方面具有优势。它们无需二次手术,并降低了与永久性植入物相关的长期风险。镁基合金尤其具有前景,因为其生物相容性和机械性能与骨骼相似。然而,镁的降解与一些生理挑战相关,需要更好地理解这些挑战。
本体外研究的主要重点是研究WE43(一种为临床应用量身定制的有前景的镁合金)的成骨和免疫调节潜力,并测试添加等离子体电解氧化(PEO)表面改性后的成骨效果。
目前的数据表明,WE43植入物具有出色的生物相容性和生物活性,可促进成骨细胞的活力并增强成骨基因的表达,特别是Alpl和Tnfrsf11b。PEO表面改性并未进一步增强成骨分化。值得注意的是,WE43植入物在RAW264.7小鼠巨噬细胞中引发的炎症反应极小,表明其具有良好的生物相容性。此外,用WE43植入物培养的RAW264.7小鼠巨噬细胞收集的上清液刺激了MC3T3-E1小鼠成骨细胞中Alpl的表达,证明了它们潜在的骨免疫效应。
目前的研究结果突出了WE43合金作为用于骨再生应用的生物相容性和骨诱导生物材料的前景潜力。它们的骨免疫调节进一步证明了使用这种合金系统的优势。具体而言,最小的、可控的炎症反应可促进更快地过渡到骨重塑阶段,从而实现更快、更有效的骨再生。
进行了一项全面的体外研究,以评估WE43和经PEO处理的WE43对MC3T3-E1小鼠成骨细胞的活力、碱性磷酸酶(ALP)表达、成骨基因表达(Alpl、Tnfrsf11b和Bglap)以及矿化的影响。通过评估RAW264.7小鼠巨噬细胞与合金直接接触后的反应,来评价对WE43的骨免疫调节反应。