Suppr超能文献

基于人工智能的模型与医生对肝细胞癌患者的诊断性能:一项系统评价和荟萃分析

Diagnostic performance of AI-based models versus physicians among patients with hepatocellular carcinoma: a systematic review and meta-analysis.

作者信息

Al-Obeidat Feras, Hafez Wael, Gador Muneir, Ahmed Nesma, Abdeljawad Marwa Muhammed, Yadav Antesh, Rashed Asrar

机构信息

College of Technological Innovation, Zayed University, Abu Dubai, United Arab Emirates.

NMC Royal Hospital, Khalifa City, United Arab Emirates.

出版信息

Front Artif Intell. 2024 Aug 19;7:1398205. doi: 10.3389/frai.2024.1398205. eCollection 2024.

Abstract

BACKGROUND

Hepatocellular carcinoma (HCC) is a common primary liver cancer that requires early diagnosis due to its poor prognosis. Recent advances in artificial intelligence (AI) have facilitated hepatocellular carcinoma detection using multiple AI models; however, their performance is still uncertain.

AIM

This meta-analysis aimed to compare the diagnostic performance of different AI models with that of clinicians in the detection of hepatocellular carcinoma.

METHODS

We searched the PubMed, Scopus, Cochrane Library, and Web of Science databases for eligible studies. The R package was used to synthesize the results. The outcomes of various studies were aggregated using fixed-effect and random-effects models. Statistical heterogeneity was evaluated using I-squared (I) and chi-square statistics.

RESULTS

We included seven studies in our meta-analysis;. Both physicians and AI-based models scored an average sensitivity of 93%. Great variation in sensitivity, accuracy, and specificity was observed depending on the model and diagnostic technique used. The region-based convolutional neural network (RCNN) model showed high sensitivity (96%). Physicians had the highest specificity in diagnosing hepatocellular carcinoma(100%); furthermore, models-based convolutional neural networks achieved high sensitivity. Models based on AI-assisted Contrast-enhanced ultrasound (CEUS) showed poor accuracy (69.9%) compared to physicians and other models. The leave-one-out sensitivity revealed high heterogeneity among studies, which represented true differences among the studies.

CONCLUSION

Models based on Faster R-CNN excel in image classification and data extraction, while both CNN-based models and models combining contrast-enhanced ultrasound (CEUS) with artificial intelligence (AI) had good sensitivity. Although AI models outperform physicians in diagnosing HCC, they should be utilized as supportive tools to help make more accurate and timely decisions.

摘要

背景

肝细胞癌(HCC)是一种常见的原发性肝癌,因其预后较差,需要早期诊断。人工智能(AI)的最新进展推动了使用多种AI模型检测肝细胞癌;然而,它们的性能仍不确定。

目的

本荟萃分析旨在比较不同AI模型与临床医生在检测肝细胞癌方面的诊断性能。

方法

我们在PubMed、Scopus、Cochrane图书馆和Web of Science数据库中搜索符合条件的研究。使用R包来综合结果。使用固定效应和随机效应模型汇总各项研究的结果。使用I²(I)和卡方统计评估统计异质性。

结果

我们的荟萃分析纳入了七项研究。医生和基于AI的模型的平均敏感性均为93%。根据所使用的模型和诊断技术,观察到敏感性、准确性和特异性存在很大差异。基于区域的卷积神经网络(RCNN)模型显示出高敏感性(96%)。医生在诊断肝细胞癌方面具有最高的特异性(100%);此外,基于卷积神经网络的模型实现了高敏感性。与医生和其他模型相比,基于AI辅助的对比增强超声(CEUS)的模型显示出较差的准确性(69.9%)。留一法敏感性显示研究之间存在高度异质性,这代表了研究之间的真实差异。

结论

基于Faster R-CNN的模型在图像分类和数据提取方面表现出色,而基于卷积神经网络的模型以及将对比增强超声(CEUS)与人工智能(AI)相结合的模型都具有良好的敏感性。尽管AI模型在诊断HCC方面优于医生,但它们应作为辅助工具,以帮助做出更准确和及时的决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7088/11368160/0f55a0aa659d/frai-07-1398205-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验