Suppr超能文献

通过电子隐身实现重掺杂半导体中的迁移率增强。

Mobility enhancement in heavily doped semiconductors via electron cloaking.

作者信息

Zhou Jiawei, Zhu Hangtian, Song Qichen, Ding Zhiwei, Mao Jun, Ren Zhifeng, Chen Gang

机构信息

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA.

出版信息

Nat Commun. 2022 May 6;13(1):2482. doi: 10.1038/s41467-022-29958-2.

Abstract

Doping is central for solid-state devices from transistors to thermoelectric energy converters. The interaction between electrons and dopants plays a pivotal role in carrier transport. Conventional theory suggests that the Coulomb field of the ionized dopants limits the charge mobility at high carrier densities, and that either the atomic details of the dopants are unimportant or the mobility can only be further degraded, while experimental results often show that dopant choice affects mobility. In practice, the selection of dopants is still mostly a trial-and-error process. Here we demonstrate, via first-principles simulation and comparison with experiments, that a large short-range perturbation created by selected dopants can in fact counteract the long-range Coulomb field, leading to electron transport that is nearly immune to the presence of dopants. Such "cloaking" of dopants leads to enhanced mobilities at high carrier concentrations close to the intrinsic electron-phonon scattering limit. We show that the ionic radius can be used to guide dopant selection in order to achieve such an electron-cloaking effect. Our finding provides guidance to the selection of dopants for solid-state conductors to achieve high mobility for electronic, photonic, and energy conversion applications.

摘要

掺杂对于从晶体管到热电能量转换器的固态器件至关重要。电子与掺杂剂之间的相互作用在载流子输运中起着关键作用。传统理论认为,电离掺杂剂的库仑场在高载流子密度下会限制电荷迁移率,并且要么掺杂剂的原子细节不重要,要么迁移率只会进一步降低,而实验结果常常表明掺杂剂的选择会影响迁移率。在实际应用中,掺杂剂的选择仍然大多是一个反复试验的过程。在此,我们通过第一性原理模拟并与实验进行比较,证明所选掺杂剂产生的大的短程微扰实际上可以抵消长程库仑场,从而导致电子输运几乎不受掺杂剂存在的影响。这种掺杂剂的“隐身”效应在接近本征电子 - 声子散射极限的高载流子浓度下会提高迁移率。我们表明离子半径可用于指导掺杂剂的选择,以实现这种电子隐身效果。我们的发现为固态导体掺杂剂的选择提供了指导,以便在电子、光子和能量转换应用中实现高迁移率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d97/9076901/02dcb9e7d9e5/41467_2022_29958_Fig1_HTML.jpg

相似文献

1
Mobility enhancement in heavily doped semiconductors via electron cloaking.
Nat Commun. 2022 May 6;13(1):2482. doi: 10.1038/s41467-022-29958-2.
2
Chemical Doping of Organic and Coordination Polymers for Thermoelectric and Spintronic Applications: A Theoretical Understanding.
Acc Chem Res. 2023 Aug 15;56(16):2127-2138. doi: 10.1021/acs.accounts.3c00091. Epub 2023 Jul 11.
3
Achieving Efficient n-Doping of Conjugated Polymers by Molecular Dopants.
Acc Chem Res. 2021 Jul 6;54(13):2871-2883. doi: 10.1021/acs.accounts.1c00223. Epub 2021 Jun 21.
4
Charge transport in electrically doped amorphous organic semiconductors.
Macromol Rapid Commun. 2015 Jun;36(11):984-1000. doi: 10.1002/marc.201500026. Epub 2015 Apr 9.
5
Molecular Dopant-Dependent Charge Transport in Surface-Charge-Transfer-Doped Tungsten Diselenide Field Effect Transistors.
Adv Mater. 2021 Nov;33(44):e2101598. doi: 10.1002/adma.202101598. Epub 2021 Sep 17.
6
Reduced dopant-induced scattering in remote charge-transfer-doped MoS field-effect transistors.
Sci Adv. 2022 Sep 23;8(38):eabn3181. doi: 10.1126/sciadv.abn3181. Epub 2022 Sep 21.
7
Unravelling Doping Effects on PEDOT at the Molecular Level: From Geometry to Thermoelectric Transport Properties.
J Am Chem Soc. 2015 Oct 14;137(40):12929-38. doi: 10.1021/jacs.5b06584. Epub 2015 Oct 5.
8
The Critical Role of Dopant Cations in Electrical Conductivity and Thermoelectric Performance of n-Doped Polymers.
J Am Chem Soc. 2020 Sep 9;142(36):15340-15348. doi: 10.1021/jacs.0c05699. Epub 2020 Aug 26.
10
Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules.
Acc Chem Res. 2016 Mar 15;49(3):370-8. doi: 10.1021/acs.accounts.5b00438. Epub 2016 Feb 8.

引用本文的文献

1
Improved Charge Carrier Dynamics by Unconventional Doping Strategy for BiVO Photoanode.
Small Sci. 2025 May 19;5(7):2500051. doi: 10.1002/smsc.202500051. eCollection 2025 Jul.
2
Electron Cloaking in MoS for High-Performance Optoelectronics.
Nano Lett. 2025 Jun 11;25(23):9463-9469. doi: 10.1021/acs.nanolett.5c02169. Epub 2025 May 28.
3
Intervalence plasmons in boron-doped diamond.
Nat Commun. 2025 Jan 14;16(1):444. doi: 10.1038/s41467-024-55353-0.
4
Atomically Resolved Defect-Engineering Scattering Potential in 2D Semiconductors.
ACS Nano. 2024 Jul 9;18(27):17622-17629. doi: 10.1021/acsnano.4c02066. Epub 2024 Jun 26.
6
Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS for NH gas detection.
RSC Adv. 2022 Sep 13;12(40):25992-26010. doi: 10.1039/d2ra04028j. eCollection 2022 Sep 12.

本文引用的文献

2
Enhanced Thermoelectric Performance of ZrTaNiSn Half-Heusler Alloys by Diagonal-Rule Doping.
ACS Appl Mater Interfaces. 2020 Jan 22;12(3):3773-3783. doi: 10.1021/acsami.9b21517. Epub 2020 Jan 8.
3
High thermoelectric cooling performance of n-type MgBi-based materials.
Science. 2019 Aug 2;365(6452):495-498. doi: 10.1126/science.aax7792. Epub 2019 Jul 18.
4
Ultrahigh Power Factor in Thermoelectric System NbMFeSb (M = Hf, Zr, and Ti).
Adv Sci (Weinh). 2018 May 2;5(7):1800278. doi: 10.1002/advs.201800278. eCollection 2018 Jul.
5
Achieving high power factor and output power density in p-type half-Heuslers Nb1-xTixFeSb.
Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):13576-13581. doi: 10.1073/pnas.1617663113. Epub 2016 Nov 15.
6
Highly Efficient Free Energy Calculations of the Fe Equation of State Using Temperature-Dependent Effective Potential Method.
J Phys Chem A. 2016 Nov 3;120(43):8761-8768. doi: 10.1021/acs.jpca.6b08633. Epub 2016 Oct 21.
7
Fröhlich Electron-Phonon Vertex from First Principles.
Phys Rev Lett. 2015 Oct 23;115(17):176401. doi: 10.1103/PhysRevLett.115.176401. Epub 2015 Oct 21.
10
Anharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulations.
J Phys Condens Matter. 2014 Jun 4;26(22):225402. doi: 10.1088/0953-8984/26/22/225402. Epub 2014 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验