Wu Jimeng, Wick Peter, Nowack Bernd
Empa, Swiss Federal Laboratories for Materials Science and Technology, Nanomaterials in Health Laboratory, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland.
Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland.
ACS Nano. 2025 Jul 29;19(29):26425-26437. doi: 10.1021/acsnano.5c03040. Epub 2025 Jul 16.
Nanoparticles have gained significant attention in biomedicine, electronics, and environmental science due to their unique physicochemical properties, which critically influence their absorption, distribution, metabolism, and excretion behavior in biological systems. However, predicting nanoparticle biodistribution and pharmacokinetics remains challenging due to the complexity of biological systems and the reliance on animal-derived data for physiologically based pharmacokinetic (PBPK) modeling. To address these limitations, this study integrates PBPK modeling with quantitative structure-activity (QSAR) relationship principles and multivariate linear regression (MLR) to develop a predictive framework for nanoparticle biodistribution based solely on physicochemical properties, using biodistribution data from healthy mice. Focusing exclusively on nondissolvable nanoparticles, we employed Bayesian analysis with Markov chain Monte Carlo simulations to fit PBPK models and generate kinetic parameters. The MLR-PBPK framework demonstrated strong predictive accuracy for kinetic indicators (adjusted up to 0.9) and successfully simulated nanoparticle biodistribution across 18 experiments. Key physicochemical properties such as zeta potential, size, and coating were identified as the most influential predictors, while the core material and shape had lesser impacts. Despite its success, the model faced limitations in predicting concentration-time curves for certain nanoparticles, highlighting the need for expanded data sets and nonlinear modeling approaches. This study provides a robust, nonanimal alternative for nanoparticle risk assessment, advancing safe and sustainable by design (SSbD) frameworks and offering a valuable tool for early-stage nanoparticle evaluation and design.
由于其独特的物理化学性质,纳米颗粒在生物医学、电子学和环境科学领域受到了广泛关注,这些性质对其在生物系统中的吸收、分布、代谢和排泄行为有着至关重要的影响。然而,由于生物系统的复杂性以及基于生理的药代动力学(PBPK)模型对动物源数据的依赖,预测纳米颗粒的生物分布和药代动力学仍然具有挑战性。为了解决这些局限性,本研究将PBPK模型与定量构效关系(QSAR)原理和多元线性回归(MLR)相结合,仅基于物理化学性质,利用健康小鼠的生物分布数据,开发了一个纳米颗粒生物分布的预测框架。我们专门关注不可溶解的纳米颗粒,采用贝叶斯分析和马尔可夫链蒙特卡罗模拟来拟合PBPK模型并生成动力学参数。MLR-PBPK框架对动力学指标具有很强的预测准确性(调整后高达0.9),并成功模拟了18个实验中的纳米颗粒生物分布。关键的物理化学性质,如zeta电位、尺寸和涂层,被确定为最有影响力的预测因素,而核心材料和形状的影响较小。尽管取得了成功,但该模型在预测某些纳米颗粒的浓度-时间曲线时仍面临局限性,这突出了需要扩大数据集和采用非线性建模方法。本研究为纳米颗粒风险评估提供了一种强大的、非动物替代方法,推进了设计安全与可持续(SSbD)框架,并为纳米颗粒的早期评估和设计提供了一个有价值的工具。