Suppr超能文献

基于物理化学描述符的数据驱动型纳米颗粒生物分布预测

Data-Driven Prediction of Nanoparticle Biodistribution from Physicochemical Descriptors.

作者信息

Wu Jimeng, Wick Peter, Nowack Bernd

机构信息

Empa, Swiss Federal Laboratories for Materials Science and Technology, Nanomaterials in Health Laboratory, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland.

Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland.

出版信息

ACS Nano. 2025 Jul 29;19(29):26425-26437. doi: 10.1021/acsnano.5c03040. Epub 2025 Jul 16.

Abstract

Nanoparticles have gained significant attention in biomedicine, electronics, and environmental science due to their unique physicochemical properties, which critically influence their absorption, distribution, metabolism, and excretion behavior in biological systems. However, predicting nanoparticle biodistribution and pharmacokinetics remains challenging due to the complexity of biological systems and the reliance on animal-derived data for physiologically based pharmacokinetic (PBPK) modeling. To address these limitations, this study integrates PBPK modeling with quantitative structure-activity (QSAR) relationship principles and multivariate linear regression (MLR) to develop a predictive framework for nanoparticle biodistribution based solely on physicochemical properties, using biodistribution data from healthy mice. Focusing exclusively on nondissolvable nanoparticles, we employed Bayesian analysis with Markov chain Monte Carlo simulations to fit PBPK models and generate kinetic parameters. The MLR-PBPK framework demonstrated strong predictive accuracy for kinetic indicators (adjusted up to 0.9) and successfully simulated nanoparticle biodistribution across 18 experiments. Key physicochemical properties such as zeta potential, size, and coating were identified as the most influential predictors, while the core material and shape had lesser impacts. Despite its success, the model faced limitations in predicting concentration-time curves for certain nanoparticles, highlighting the need for expanded data sets and nonlinear modeling approaches. This study provides a robust, nonanimal alternative for nanoparticle risk assessment, advancing safe and sustainable by design (SSbD) frameworks and offering a valuable tool for early-stage nanoparticle evaluation and design.

摘要

由于其独特的物理化学性质,纳米颗粒在生物医学、电子学和环境科学领域受到了广泛关注,这些性质对其在生物系统中的吸收、分布、代谢和排泄行为有着至关重要的影响。然而,由于生物系统的复杂性以及基于生理的药代动力学(PBPK)模型对动物源数据的依赖,预测纳米颗粒的生物分布和药代动力学仍然具有挑战性。为了解决这些局限性,本研究将PBPK模型与定量构效关系(QSAR)原理和多元线性回归(MLR)相结合,仅基于物理化学性质,利用健康小鼠的生物分布数据,开发了一个纳米颗粒生物分布的预测框架。我们专门关注不可溶解的纳米颗粒,采用贝叶斯分析和马尔可夫链蒙特卡罗模拟来拟合PBPK模型并生成动力学参数。MLR-PBPK框架对动力学指标具有很强的预测准确性(调整后高达0.9),并成功模拟了18个实验中的纳米颗粒生物分布。关键的物理化学性质,如zeta电位、尺寸和涂层,被确定为最有影响力的预测因素,而核心材料和形状的影响较小。尽管取得了成功,但该模型在预测某些纳米颗粒的浓度-时间曲线时仍面临局限性,这突出了需要扩大数据集和采用非线性建模方法。本研究为纳米颗粒风险评估提供了一种强大的、非动物替代方法,推进了设计安全与可持续(SSbD)框架,并为纳米颗粒的早期评估和设计提供了一个有价值的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36e1/12312149/31c171032946/nn5c03040_0001.jpg

相似文献

1
Data-Driven Prediction of Nanoparticle Biodistribution from Physicochemical Descriptors.
ACS Nano. 2025 Jul 29;19(29):26425-26437. doi: 10.1021/acsnano.5c03040. Epub 2025 Jul 16.
2
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
3
Interventions to improve safe and effective medicines use by consumers: an overview of systematic reviews.
Cochrane Database Syst Rev. 2014 Apr 29;2014(4):CD007768. doi: 10.1002/14651858.CD007768.pub3.
5
and DL predicting general complications but not prolonged air leaks in pulmonary segmentectomy.
Ther Adv Respir Dis. 2025 Jan-Dec;19:17534666251341777. doi: 10.1177/17534666251341777. Epub 2025 Jul 7.
6
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
7

本文引用的文献

2
Predicting tissue distribution and tumor delivery of nanoparticles in mice using machine learning models.
J Control Release. 2024 Oct;374:219-229. doi: 10.1016/j.jconrel.2024.08.015. Epub 2024 Aug 16.
3
Advances in Physiologically Based Pharmacokinetic (PBPK) Modeling of Nanomaterials.
ACS Pharmacol Transl Sci. 2024 Jul 12;7(8):2251-2279. doi: 10.1021/acsptsci.4c00250. eCollection 2024 Aug 9.
4
Roadmap towards safe and sustainable advanced and innovative materials. (Outlook for 2024-2030).
Comput Struct Biotechnol J. 2024 Jun 2;25:105-126. doi: 10.1016/j.csbj.2024.05.018. eCollection 2024 Dec.
5
Meta-Analysis of Nanoparticle Distribution in Tumors and Major Organs in Tumor-Bearing Mice.
ACS Nano. 2023 Oct 24;17(20):19810-19831. doi: 10.1021/acsnano.3c04037. Epub 2023 Oct 9.
6
An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanoparticle delivery to tumors in mice.
J Control Release. 2023 Sep;361:53-63. doi: 10.1016/j.jconrel.2023.07.040. Epub 2023 Jul 31.
7
Nanoparticle biodistribution coefficients: A quantitative approach for understanding the tissue distribution of nanoparticles.
Adv Drug Deliv Rev. 2023 Mar;194:114708. doi: 10.1016/j.addr.2023.114708. Epub 2023 Jan 20.
8
Prediction of In Vivo Pharmacokinetic Parameters and Time-Exposure Curves in Rats Using Machine Learning from the Chemical Structure.
Mol Pharm. 2022 May 2;19(5):1488-1504. doi: 10.1021/acs.molpharmaceut.2c00027. Epub 2022 Apr 12.
9
Machine Learning Models for Human Pharmacokinetic Parameters with In-House Validation.
Mol Pharm. 2021 Dec 6;18(12):4520-4530. doi: 10.1021/acs.molpharmaceut.1c00718. Epub 2021 Nov 10.
10
Engineering precision nanoparticles for drug delivery.
Nat Rev Drug Discov. 2021 Feb;20(2):101-124. doi: 10.1038/s41573-020-0090-8. Epub 2020 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验