Werkman Nikki C C, Nielen Johannes T H, Tapia-Galisteo José, Somolinos-Simón Francisco J, Hernando Maria Elena, Wang Junfeng, Jiu Li, Goettsch Wim G, Bosma Hans, Schram Miranda T, van Greevenbroek Marleen M J, Wesselius Anke, Stehouwer Coen D A, Driessen Johanna H M, Garcia-Sáez Gema
Department of Clinical Pharmacy, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
Department of Clinical Pharmacy and Toxicology, Maastricht University Medical Center+, Maastricht, The Netherlands.
Diabetes Obes Metab. 2025 Oct;27(10):5524-5537. doi: 10.1111/dom.16598. Epub 2025 Jul 17.
Despite the heterogeneity of type 2 diabetes (T2D), all patients are treated according to the same guideline. Some people have more difficulty reaching treatment goals (adequate glycaemic control) and maintaining quality of life (QoL). Therefore, a prediction model identifying who is unlikely to reach these goals within the next year would be useful to allow specific attention to these people.
To investigate if machine learning algorithms can predict which individuals are unlikely to reach glycaemic control and likely to deteriorate in QoL in 1 year.
We used data from The Maastricht Study, including 842 people with T2D and information on HbA1c values, and 964 people with T2D and information on QoL. We evaluated several machine learning algorithms with feature selection methods and hyperparameter tuning in fivefold cross-validation for the corresponding outcomes.
The prediction of inadequate glycaemic control showed good performance. The support vector machine classifier performed best in terms of accuracy (0.76 (95% CI 0.71-0.79)), precision (0.79 (95% CI 0.71-0.83)) and area under the receiver operating characteristic curve (AUC-ROC) (0.85 (95% CI 0.80-0.89)). The multi-layer perceptron classifier performed best in terms of recall (0.72 (95% CI 0.64-0.79)) and F1-score (0.73 (95% CI 0.64-0.79)). The prediction of deterioration in QoL showed inadequate performance and did not seem feasible.
Prediction of glycaemic control after 1 year in T2D is feasible with good model performance. However, the prediction of deterioration in QoL remains a challenge and needs further work.
尽管2型糖尿病(T2D)具有异质性,但所有患者均按照相同的指南进行治疗。有些人在实现治疗目标(充分的血糖控制)和维持生活质量(QoL)方面存在更大困难。因此,一个能够识别出在未来一年内不太可能实现这些目标的预测模型,将有助于对这些人群给予特别关注。
研究机器学习算法能否预测哪些个体在1年内不太可能实现血糖控制且生活质量可能恶化。
我们使用了马斯特里赫特研究的数据,其中包括842名患有T2D且有糖化血红蛋白(HbA1c)值信息的人,以及964名患有T2D且有生活质量信息的人。我们在五折交叉验证中使用特征选择方法和超参数调整对几种机器学习算法进行了评估,以得出相应结果。
血糖控制不佳的预测表现良好。支持向量机分类器在准确率(0.76(95%置信区间0.71 - 0.79))、精确率(0.79(95%置信区间0.71 - 0.83))和受试者工作特征曲线下面积(AUC - ROC)(0.85(95%置信区间0.80 - 0.89))方面表现最佳。多层感知器分类器在召回率(0.72(95%置信区间0.64 - 0.79))和F1分数(0.73(95%置信区间0.64 - 0.79))方面表现最佳。生活质量恶化的预测表现不佳,似乎不可行。
预测T2D患者1年后的血糖控制是可行的,模型性能良好。然而,生活质量恶化的预测仍然是一个挑战,需要进一步研究。