Suppr超能文献

一种基于密码子使用情况的方法,用于对近期跨物种传播的甲型流感进行分层。

A codon usage-based approach for the stratification of Influenza A across recent spillovers.

作者信息

Alfonsi Tommaso, Chiara Matteo, Bernasconi Anna

机构信息

Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy.

Department of Biosciences, Università degli Studi di Milano, Milan, Italy.

出版信息

Comput Struct Biotechnol J. 2025 Jun 25;27:2757-2771. doi: 10.1016/j.csbj.2025.06.030. eCollection 2025.

Abstract

Influenza A virus (IAV) is a highly adaptable pathogen that poses a significant threat to human health. Genomic surveillance of IAVs is complex due to their broad host range, zoonotic potential, and rapid evolution. Strategies based on codon preference analysis have been successfully employed for the discrimination of IAVs with different host specificity in the past. Hence, monitoring changes in codon usage offers a promising strategy for tracking IAVs' host range and identifying significant epidemiological events. In this study, we developed a computational workflow for the stratification of IAVs based on codon usage profiles by analysing recent IAV-associated epidemiological emergencies: 1) the 2009 H1N1 pandemic in North America, 2) the H7N9 epidemic in China (2013-2017), and 3) the long-term circulation of H5N1 in domestic birds and its subsequent spillover to dairy cows. We explore the application of codon usage metrics for capturing patterns of viral diversification and expand previous related findings in the field. Our results uncovered important differences in genomic features, which are not always reflected in the clade-based nomenclature. Interestingly, a reduced set of amino acids and associated codons was sufficient to summarize salient patterns of IAV genomes across the 3 paradigmatic cases herein considered, suggesting shared evolutionary signatures across IAV serotypes. Codon usage-based stratification effectively highlighted key epidemiological events and enabled detailed comparisons of genomic features across IAV serotypes. The approach developed in this work provides a scalable framework for IAV genomic surveillance, offering insights into viral evolution and shared patterns of codon usage preferences. Its general applicability makes it suitable for extending to other Influenza A serotypes, particularly those for which available genomic data are limited or a reference nomenclature is not established.

摘要

甲型流感病毒(IAV)是一种适应性很强的病原体,对人类健康构成重大威胁。由于IAV宿主范围广泛、具有人畜共患病潜力且进化迅速,对其进行基因组监测较为复杂。过去,基于密码子偏好分析的策略已成功用于区分具有不同宿主特异性的IAV。因此,监测密码子使用情况的变化为追踪IAV的宿主范围和识别重大流行病学事件提供了一种很有前景的策略。在本研究中,我们通过分析近期与IAV相关的流行病学突发事件,开发了一种基于密码子使用谱对IAV进行分层的计算流程:1)2009年北美H1N1大流行,2)中国的H7N9疫情(2013 - 2017年),以及3)H5N1在家禽中的长期传播及其随后向奶牛的溢出。我们探索了密码子使用指标在捕捉病毒多样化模式方面的应用,并扩展了该领域以前的相关发现。我们的结果揭示了基因组特征的重要差异,这些差异并不总是反映在基于进化枝的命名法中。有趣的是,一组减少的氨基酸和相关密码子足以总结本文所考虑的3个典型案例中IAV基因组的显著模式,这表明不同IAV血清型具有共同的进化特征。基于密码子使用的分层有效地突出了关键流行病学事件,并能够对不同IAV血清型的基因组特征进行详细比较。本研究中开发的方法为IAV基因组监测提供了一个可扩展的框架,有助于深入了解病毒进化和密码子使用偏好的共同模式。其普遍适用性使其适用于扩展到其他甲型流感血清型,特别是那些可用基因组数据有限或尚未建立参考命名法的血清型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0cd/12266522/1b188b873e10/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验