文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

I标记的骨髓间充质干细胞衍生的细胞外囊泡通过绿色荧光蛋白报告系统递送CRISPR/Cas9核糖核蛋白以抑制骨肉瘤的增殖和转移。

I-labelled BMSC-Derived Extracellular Vesicles Deliver CRISPR/Cas9 Ribonucleoproteins With a GFP-Reporter System to Inhibit Osteosarcoma Proliferation and Metastasis.

作者信息

Pan Yujie, Yang Xianteng, Zeng Zhirui, Liu Futao, Luo Jin, Shen Mao, Zhou Wei, Li Jianyang, Jiang Guangfu, Sun Li, Huang Haifeng, Pan Runsang

机构信息

Department of Trauma Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.

Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.

出版信息

J Extracell Vesicles. 2025 Jul;14(7):e70130. doi: 10.1002/jev2.70130.


DOI:10.1002/jev2.70130
PMID:40673793
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12269339/
Abstract

Metastasis constitutes the principal factor leading to the unfavourable prognosis of osteosarcoma patients. Hypoxia, as the inherent microenvironment of osteosarcoma, can upregulate HIF-1α via multiple pathways, thereby facilitating osteosarcoma proliferation and metastasis. Our previous research indicated that the inwardly rectifying potassium channel subfamily J member 2 (KCNJ2) inhibits the degradation of HIF-1α in osteosarcoma. Concurrently, HIF-1α upregulates the expression of KCNJ2 through a positive feedback regulatory mechanism. This positive regulatory mechanism significantly promotes the proliferation and metastasis of osteosarcoma. Therefore, the development of a KCNJ2-targeted therapeutic strategy capable of disrupting this reciprocal regulatory loop represents a crucial intervention for impeding osteosarcoma progression. The CRISPR/Cas9 targeted gene editing technology has garnered extensive attention in the field of tumour treatment due to its high efficiency and low off-target rate. Nevertheless, the relative lag of the delivery systems has restricted its application. The extracellular vesicles (EVs) secreted by bone marrow mesenchymal stem cells (BMSCs) have a natural targeting specificity for osteosarcoma and possess superior biocompatibility, making them ideal carriers for in vivo delivery. However, it is essential to confirm whether the CRISPR/Cas9 system mediated by EVs can accurately function intracellularly. Hence, we developed a fluorescence-based Cas9 editing efficiency reporter system. When CRISPR/Cas9 system induces double-strand breaks at specific target sites and results in frameshift mutations, osteosarcoma cells will stably express GFP. This system enables the transformation of gene editing events into quantifiable fluorescence signals. Furthermore, we engineered radiolabelled EVs derived from BMSCs to deliver the CRISPR/Cas9 system targeting KCNJ2. Using this reporter system, we confirmed their efficient gene-editing capabilities in vitro. Additionally, leveraging their radiolabelling properties, we validated their targeted distribution in vivo. Subsequent investigations revealed that our constructed I@EVs-Cas9 effectively suppresses the proliferation and metastasis of osteosarcoma by targeting the inhibition of KCNJ2 expression and promoting HIF-1α ubiquitin-dependent degradation (as depicted in Graphical Abstract).

摘要

转移是导致骨肉瘤患者预后不良的主要因素。缺氧作为骨肉瘤的固有微环境,可通过多种途径上调缺氧诱导因子-1α(HIF-1α),从而促进骨肉瘤的增殖和转移。我们之前的研究表明,内向整流钾通道亚家族J成员2(KCNJ2)可抑制骨肉瘤中HIF-1α的降解。同时,HIF-1α通过正反馈调节机制上调KCNJ2的表达。这种正调节机制显著促进了骨肉瘤的增殖和转移。因此,开发一种能够破坏这种相互调节环的靶向KCNJ2的治疗策略是阻碍骨肉瘤进展的关键干预措施。CRISPR/Cas9靶向基因编辑技术因其高效性和低脱靶率在肿瘤治疗领域受到广泛关注。然而,递送系统的相对滞后限制了其应用。骨髓间充质干细胞(BMSC)分泌的细胞外囊泡(EV)对骨肉瘤具有天然的靶向特异性,并具有优异的生物相容性,使其成为体内递送的理想载体。然而,必须确认由EV介导的CRISPR/Cas9系统能否在细胞内准确发挥作用。因此,我们开发了一种基于荧光的Cas9编辑效率报告系统。当CRISPR/Cas9系统在特定靶位点诱导双链断裂并导致移码突变时,骨肉瘤细胞将稳定表达绿色荧光蛋白(GFP)。该系统能够将基因编辑事件转化为可量化的荧光信号。此外,我们对源自BMSC的放射性标记EV进行工程改造,以递送靶向KCNJ2的CRISPR/Cas9系统。使用该报告系统,我们在体外证实了它们高效的基因编辑能力。此外,利用它们的放射性标记特性,我们在体内验证了它们的靶向分布。随后的研究表明,我们构建的I@EVs-Cas9通过靶向抑制KCNJ2表达和促进HIF-1α泛素依赖性降解,有效抑制了骨肉瘤的增殖和转移(如图示摘要所示)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e74/12269339/747a1c38be4e/JEV2-14-e70130-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e74/12269339/90a3792e4a97/JEV2-14-e70130-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e74/12269339/bd25b36480f4/JEV2-14-e70130-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e74/12269339/8d9154735a7a/JEV2-14-e70130-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e74/12269339/a0ec4d8d66b9/JEV2-14-e70130-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e74/12269339/74f575156271/JEV2-14-e70130-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e74/12269339/1d6069abf01d/JEV2-14-e70130-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e74/12269339/fa7f47648ac3/JEV2-14-e70130-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e74/12269339/747a1c38be4e/JEV2-14-e70130-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e74/12269339/90a3792e4a97/JEV2-14-e70130-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e74/12269339/bd25b36480f4/JEV2-14-e70130-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e74/12269339/8d9154735a7a/JEV2-14-e70130-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e74/12269339/a0ec4d8d66b9/JEV2-14-e70130-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e74/12269339/74f575156271/JEV2-14-e70130-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e74/12269339/1d6069abf01d/JEV2-14-e70130-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e74/12269339/fa7f47648ac3/JEV2-14-e70130-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e74/12269339/747a1c38be4e/JEV2-14-e70130-g001.jpg

相似文献

[1]
I-labelled BMSC-Derived Extracellular Vesicles Deliver CRISPR/Cas9 Ribonucleoproteins With a GFP-Reporter System to Inhibit Osteosarcoma Proliferation and Metastasis.

J Extracell Vesicles. 2025-7

[2]
Modulating binding affinity of aptamer-based loading constructs enhances extracellular vesicle-mediated CRISPR/Cas9 delivery.

J Control Release. 2025-8-10

[3]
Extracellular Vesicle-Mediated Delivery of Genetic Material for Transformation and CRISPR/Cas9-based Gene Editing in .

bioRxiv. 2025-6-17

[4]
Focused ultrasound and microbubble-mediated delivery of CRISPR-Cas9 ribonucleoprotein to human induced pluripotent stem cells.

Mol Ther. 2025-3-5

[5]
Harnessing an anti-CRISPR protein for powering CRISPR/Cas9-mediated genome editing in undomesticated Bacillus strains.

Microb Cell Fact. 2025-6-23

[6]
Isolation and characterization of bone mesenchymal cell small extracellular vesicles using a novel mouse model.

J Bone Miner Res. 2024-10-29

[7]
Targeting CD44 by CRISPR-Cas9 in Multi-Drug Resistant Osteosarcoma Cells.

Cell Physiol Biochem. 2018

[8]
The Anti-Metastatic Properties of Glutathione-Stabilized Gold Nanoparticles-A Preliminary Study on Canine Osteosarcoma Cell Lines.

Int J Mol Sci. 2025-6-25

[9]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[10]
Exosomal Gene Biomarkers in Osteosarcoma: Mifepristone as a Targeted Therapeutic Revealed by Multi-Omics Analysis.

FASEB J. 2025-7-15

本文引用的文献

[1]
Advancements and challenges in mRNA and ribonucleoprotein-based therapies: From delivery systems to clinical applications.

Mol Ther Nucleic Acids. 2024-8-19

[2]
Small extracellular vesicle-mediated CRISPR-Cas9 RNP delivery for cardiac-specific genome editing.

J Control Release. 2024-6

[3]
Tumor Microenvironment-Responsive Nanocapsule Delivery CRISPR/Cas9 to Reprogram the Immunosuppressive Microenvironment in Hepatoma Carcinoma.

Adv Sci (Weinh). 2024-7

[4]
Strategies for labelling of exogenous and endogenous extracellular vesicles and their application for in vitro and in vivo functional studies.

Cell Commun Signal. 2024-3-9

[5]
Hypoxia inducible factor-1ɑ as a potential therapeutic target for osteosarcoma metastasis.

Front Pharmacol. 2024-1-24

[6]
CRISPR-Cas9 delivery strategies with engineered extracellular vesicles.

Mol Ther Nucleic Acids. 2023-9-26

[7]
Engineered Extracellular Vesicle-Delivered CRISPR/Cas9 for Radiotherapy Sensitization of Glioblastoma.

ACS Nano. 2023-9-12

[8]
CRISPR/Cas9-based application for cancer therapy: Challenges and solutions for non-viral delivery.

J Control Release. 2023-9

[9]
Clinical applications of the CRISPR/Cas9 genome-editing system: Delivery options and challenges in precision medicine.

Genes Dis. 2023-3-25

[10]
One-Minute Iodine Isotope Labeling Technology Enables Noninvasive Tracking and Quantification of Extracellular Vesicles in Tumor Lesions and Intact Animals.

Mol Pharm. 2023-7-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索