Giraldez Chavez Jose Humberto, Barton Nathaniel, Lindgren Caleb M, Mendenhall Bryn, Kimball Benjamin, Payne Samuel H
Biology Department, Brigham Young University, Provo, Utah 84602, United States.
J Proteome Res. 2025 Aug 1;24(8):3902-3912. doi: 10.1021/acs.jproteome.4c00284. Epub 2025 Jul 17.
As a diverse family of diseases, cancer is unified by a set of common dysfunctions, such as limitless growth potential and an insensitivity to antigrowth signals. These shared overarching biological processes have been termed the hallmarks of cancer. To better understand the root cause of cellular dysregulation, intense molecular characterization of tumors has utilized DNA, RNA, and protein measurement techniques to produce proteogenomic data. In large cancer cohort studies, genomic and proteogenomic data have frequently identified many cancer hallmarks including cell cycle and cell signaling. However, altered metabolism, a known cancer hallmark, is not as clearly identified in mutation screens or differential expression analyses. Here, we introduce a new computational method to identify changes in cellular regulation by focusing on the mRNA/protein relationship. We create a metric, Δ_corr, to capture when the mRNA/protein correlation changes significantly between tumor and normal tissues and show that it is distinct from differential expression and also not associated with DNA mutation profiles. Our method clearly highlights altered metabolic pathways across multiple tumor types. Δ_corr gives researchers a new perspective on the dysfunction of tumor cells and introduces a novel method for proteogenomic data integration.
作为一个多样的疾病家族,癌症具有一系列共同的功能失调特征,比如无限的生长潜能和对生长抑制信号的不敏感。这些共同的总体生物学过程被称为癌症的特征。为了更好地理解细胞失调的根本原因,对肿瘤进行的深入分子特征分析利用了DNA、RNA和蛋白质测量技术来生成蛋白质基因组数据。在大型癌症队列研究中,基因组和蛋白质基因组数据经常能识别出许多癌症特征,包括细胞周期和细胞信号传导。然而,代谢改变作为一种已知的癌症特征,在突变筛查或差异表达分析中并不那么容易被识别出来。在此,我们引入一种新的计算方法,通过关注mRNA/蛋白质关系来识别细胞调控的变化。我们创建了一个指标Δ_corr,用于捕捉肿瘤组织和正常组织之间mRNA/蛋白质相关性何时发生显著变化,并表明它不同于差异表达,也与DNA突变谱无关。我们的方法清晰地突出了多种肿瘤类型中代谢途径的改变。Δ_corr为研究人员提供了关于肿瘤细胞功能失调的新视角,并引入了一种蛋白质基因组数据整合的新方法。