Suppr超能文献

新冠病毒病的预防受多种社会风险影响:一项关于弱势群体疫苗接种和检测差异的横断面研究

COVID-19 prevention is shaped by polysocial risk: A cross-sectional study of vaccination and testing disparities in underserved populations.

作者信息

Brown David R, Cyr Derek D, Wruck Lisa, Stefano Troy A, Mehri Nader, Bursac Zoran, Munoz Richard, Baum Marianna K, Fluney Eileen, Bhoite Prasad, Garba Nana Aisha, Anderson Frederick W, Fonseca Haley R, Assaf Sara, Perreira Krista M

机构信息

Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America.

Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, United States of America.

出版信息

PLoS One. 2025 Jul 17;20(7):e0328779. doi: 10.1371/journal.pone.0328779. eCollection 2025.

Abstract

Understanding disparities in COVID-19 preventive efforts among underserved populations requires a holistic approach that considers multiple social determinants of health (SDOH). While disparities in individual COVID-19 risk factors are well-documented, the cumulative impact of these factors on vaccine uptake and testing remains insufficiently quantified. This study applies a polysocial risk framework to assess the combined influence of geo-demographic, economic, and health-related factors on COVID-19 vaccination and testing. Using cross-sectional data from 9,758 participants enrolled in the NIH Rapid Acceleration of Diagnostics - Underserved Populations (RADx-UP) program (February 2020-April 2023), we analyzed associations between polysocial risk and preventive behaviors using multivariable generalized estimating equations (GEE). Overall, 72.5% of participants reported COVID-19 vaccination, and 82.1% reported testing. However, disparities were evident across polysocial risk profiles. Individuals experiencing intersecting geo-demographic (Non-Hispanic Black, age 45, Southern residence), economic (low education, unemployment, financial hardship), and health-related risk factors (substance use, low CVD risk, no flu vaccination) were 43-48 percentage points less likely to be vaccinated compared to groups with higher adoption (p < 0.001). Testing disparities were narrower but remained significant, with differences ranging from 2 to 27 percentage points depending on the specific polysocial risk profiles. The findings underscore the utility of polysocial risk modeling as a predictive tool for identifying populations at highest risk of disengagement from preventive care, informing targeted precision public health interventions. Beyond COVID-19, this approach has broader applicability for understanding disparities in chronic disease prevention, cancer screening, maternal and child health, and health-related social needs (HRSN) interventions. Integrating polysocial risk assessments into clinical and public health settings can enhance data-driven strategies to improve population health outcomes.

摘要

了解弱势群体在新冠疫情预防措施方面的差异需要一种全面的方法,该方法要考虑到多个健康的社会决定因素(SDOH)。虽然个体新冠风险因素的差异已有充分记录,但这些因素对疫苗接种和检测的累积影响仍未得到充分量化。本研究应用多社会风险框架来评估地理人口、经济和健康相关因素对新冠疫苗接种和检测的综合影响。利用来自参与美国国立卫生研究院快速加速诊断——弱势群体(RADx-UP)项目(2020年2月至2023年4月)的9758名参与者的横断面数据,我们使用多变量广义估计方程(GEE)分析了多社会风险与预防行为之间的关联。总体而言,72.5%的参与者报告接种了新冠疫苗,82.1%的参与者报告进行了检测。然而,多社会风险概况之间的差异很明显。与采用率较高的群体相比,同时经历地理人口(非西班牙裔黑人、45岁、居住在南部)、经济(低教育水平、失业、经济困难)和健康相关风险因素(物质使用、低心血管疾病风险、未接种流感疫苗)的个体接种疫苗的可能性要低43至48个百分点(p < 0.001)。检测差异较小但仍然显著,根据具体的多社会风险概况,差异在2至27个百分点之间。研究结果强调了多社会风险建模作为一种预测工具的实用性,可用于识别最有可能不参与预防保健的人群,为有针对性的精准公共卫生干预提供信息。除了新冠疫情之外,这种方法在理解慢性病预防、癌症筛查、母婴健康以及健康相关社会需求(HRSN)干预方面具有更广泛的适用性。将多社会风险评估纳入临床和公共卫生环境可以加强数据驱动的策略,以改善人群健康结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ebd/12270183/8daa6f75bfe0/pone.0328779.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验