MS degree at College of St. Scholastica, Duluth, MN, USA.
Department of Biostatistics, Epidemiology, and Informatics at the University of Pennsylvania.
Brief Bioinform. 2021 Sep 2;22(5). doi: 10.1093/bib/bbaa369.
Development of novel informatics methods focused on improving pregnancy outcomes remains an active area of research. The purpose of this study is to systematically review the ways that artificial intelligence (AI) and machine learning (ML), including deep learning (DL), methodologies can inform patient care during pregnancy and improve outcomes.
We searched English articles on EMBASE, PubMed and SCOPUS. Search terms included ML, AI, pregnancy and informatics. We included research articles and book chapters, excluding conference papers, editorials and notes.
We identified 127 distinct studies from our queries that were relevant to our topic and included in the review. We found that supervised learning methods were more popular (n = 69) than unsupervised methods (n = 9). Popular methods included support vector machines (n = 30), artificial neural networks (n = 22), regression analysis (n = 17) and random forests (n = 16). Methods such as DL are beginning to gain traction (n = 13). Common areas within the pregnancy domain where AI and ML methods were used the most include prenatal care (e.g. fetal anomalies, placental functioning) (n = 73); perinatal care, birth and delivery (n = 20); and preterm birth (n = 13). Efforts to translate AI into clinical care include clinical decision support systems (n = 24) and mobile health applications (n = 9).
Overall, we found that ML and AI methods are being employed to optimize pregnancy outcomes, including modern DL methods (n = 13). Future research should focus on less-studied pregnancy domain areas, including postnatal and postpartum care (n = 2). Also, more work on clinical adoption of AI methods and the ethical implications of such adoption is needed.
专注于改善妊娠结局的新型信息学方法的开发仍然是一个活跃的研究领域。本研究旨在系统地回顾人工智能(AI)和机器学习(ML),包括深度学习(DL)方法如何为妊娠期间的患者护理提供信息并改善结局。
我们在 EMBASE、PubMed 和 SCOPUS 上搜索了英文文章。搜索词包括 ML、AI、pregnancy 和 informatics。我们纳入了研究文章和章节,不包括会议论文、社论和注释。
我们从查询中确定了 127 项与我们的主题相关的研究,并将其纳入了综述。我们发现,监督学习方法(n=69)比无监督方法(n=9)更受欢迎。流行的方法包括支持向量机(n=30)、人工神经网络(n=22)、回归分析(n=17)和随机森林(n=16)。像 DL 这样的方法开始获得关注(n=13)。在 AI 和 ML 方法最常使用的妊娠领域内,常见的领域包括产前护理(如胎儿异常、胎盘功能)(n=73);围产期护理、分娩和分娩(n=20);和早产(n=13)。将 AI 转化为临床护理的努力包括临床决策支持系统(n=24)和移动健康应用程序(n=9)。
总的来说,我们发现 ML 和 AI 方法正在被用于优化妊娠结局,包括现代 DL 方法(n=13)。未来的研究应集中在研究较少的妊娠领域,包括产后和产后护理(n=2)。此外,需要更多关于 AI 方法的临床应用和这种应用的伦理影响的工作。