Kuang Junhua, Yu Jia, Zhang Qiaoyu, Zhu Shihang, Wang Ruoxuan, Ma Junchi, Wan Jinlong, Han Han, He Zhifeng, Ma Nuowen, Zhang Yuting, Cao Liuxuan, Zheng Shisheng, Wang Binju, Peng Li, Yang Shuliang, Li Jian-Feng, Song Weiguo, Li Yuliang
College of Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, College of Material, Xiamen University, Xiamen, 361005, China.
Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China.
Adv Mater. 2025 Jul 17:e2506979. doi: 10.1002/adma.202506979.
Graphdiyne (GDY), an emerging 2D carbon allotrope, holds immense potential for diverse applications but is severely constrained by relatively complex and time-intensive synthesis methods. Here, a novel electron beam irradiation strategy is reported that enables the ultrafast and scalable synthesis of GDY directly from its protected monomer, hexakis[(trimethylsilyl)ethynyl]benzene (HEB-TMS), under ambient conditions. To the best of our knowledge, this represents the first report of the direct use of electron beam irradiation in carbon materials synthesis, achieving the shortest synthesis time for GDY from HEB-TMS reported to date. This unprecedented efficiency arises from the rapid in situ formation of copper acetylide intermediates, followed by electron-induced homolytic cleavage to generate alkynyl radicals that undergo efficient homo-coupling into GDY. Moreover, this flash approach enables the in situ formation of uniformly dispersed CuO nanoparticles on GDY, resulting in a composite with exceptional efficiency and stability for the electrochemical nitrate reduction to ammonia. By providing a green, scalable, and efficient synthetic route, this work not only marks a leap toward GDY production but also establishes a versatile platform for designing GDY-based catalysts, paving the way for broader applications and industrial-scale production.
石墨炔(GDY)作为一种新兴的二维碳同素异形体,在多种应用中具有巨大潜力,但受到相对复杂且耗时的合成方法的严重限制。在此,报道了一种新颖的电子束辐照策略,该策略能够在环境条件下直接从其保护单体六[(三甲基硅基)乙炔基]苯(HEB-TMS)实现石墨炔的超快且可扩展合成。据我们所知,这是首次报道在碳材料合成中直接使用电子束辐照,实现了从HEB-TMS合成石墨炔的最短报道时间。这种前所未有的效率源于乙炔铜中间体的快速原位形成,随后通过电子诱导均裂产生炔基自由基,这些自由基高效地进行均聚形成石墨炔。此外,这种快速方法能够在石墨炔上原位形成均匀分散的氧化铜纳米颗粒,从而得到一种在将电化学硝酸盐还原为氨方面具有卓越效率和稳定性的复合材料。通过提供一种绿色、可扩展且高效的合成路线,这项工作不仅标志着石墨炔生产取得了飞跃,还建立了一个用于设计基于石墨炔的催化剂的通用平台,为更广泛的应用和工业规模生产铺平了道路。