Zhou Hua, Xu Lei, Ren Yao, Zhang Daowen, Li Pingfei, Yang Jixiang, Yan Junlian, Tan Zhengping
School of Automobile and Transportation, Xihua University, Chengdu Sichuan, 610039, China.
Sichuan new energy vehicle intelligent control and simulation test technology engineering research center, Chengdu Sichuan, 610039, China.
Sci Rep. 2025 Jul 20;15(1):26350. doi: 10.1038/s41598-025-11593-8.
Traffic accident scenarios serve as one of the critical sources for autonomous driving simulation testing. However, scenarios directly generated from traffic accident data for testing autonomous driving safety suffer from insufficient hazard. This paper proposes a scenario derivation method that integrates a scene tree model constructed based on accident data with an improved adaptive stress test. By establishing the accident scene tree model, the search output yielded six categories of vehicle-to-vehicle conflict samples, eight categories of vehicle-pedestrian conflict samples, six categories of vehicle-non-motorized two/three-wheeler conflict samples, and six categories of vehicle-motorized two/three-wheeler conflict samples. Finally, the collision scenarios were derived using an adaptive stress testing algorithm, and the generated scenarios were evaluated in terms of rationality and hazard. The results show that the generation rates of vehicle-to-vehicle collision scenarios, vehicle-pedestrian collision scenarios, and vehicle-two-wheeler scenarios are 11.97%, 12.28%, and 13.38%, respectively. The method proposed in this paper enhances the hazard level of generated scenarios, which exceeds that of real collision scenarios. The research findings can provide references for constructing and deriving hazardous scenarios in current autonomous driving.
交通事故场景是自动驾驶模拟测试的关键来源之一。然而,直接从交通事故数据生成的用于测试自动驾驶安全性的场景存在危险不足的问题。本文提出了一种场景推导方法,该方法将基于事故数据构建的场景树模型与改进的自适应压力测试相结合。通过建立事故场景树模型,搜索输出产生了六类车辆与车辆冲突样本、八类车辆与行人冲突样本、六类车辆与非机动车两轮/三轮冲突样本以及六类车辆与机动两轮/三轮冲突样本。最后,使用自适应压力测试算法推导碰撞场景,并从合理性和危险性方面对生成的场景进行评估。结果表明,车辆与车辆碰撞场景、车辆与行人碰撞场景以及车辆与两轮车场景的生成率分别为11.97%、12.28%和13.38%。本文提出的方法提高了生成场景的危险程度,超过了实际碰撞场景。研究结果可为当前自动驾驶中危险场景的构建和推导提供参考。