Suppr超能文献

激光烧蚀合成参数在金属有机框架衍生杂化纳米复合材料氧还原电催化性能中的作用。

Role of laser ablation synthesis parameters in ORR electrocatalytic performance of MOF-derived hybrid nanocomposites.

作者信息

Mokhtarnejad Mahshid, Ribeiro Erick L, Almasi Soheil, Khomami Bamin

机构信息

Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville Tennessee 37996 USA

Material Research and Innovation Laboratory (MRAIL), University of Tennessee Knoxville Tennessee 37996 USA.

出版信息

RSC Adv. 2025 Jul 18;15(31):25707-25716. doi: 10.1039/d5ra04056f. eCollection 2025 Jul 15.

Abstract

This study presents a rapid, eco-friendly, and scalable method for fabricating non-precious metal electrocatalysts for the oxygen reduction reaction (ORR) using Laser Ablation Synthesis in Solution (LASiS). We demonstrate that by optimizing the laser output power and ablation time, Co-based metal-organic frameworks (MOFs) can be directly synthesized and converted into hybrid nanocomposites composed of CoO, CoO, and metallic Co embedded in nitrogen-doped carbon. These materials exhibit high porosity, stable crystalline structures, and enhanced ORR activity, including a four-electron transfer pathway, excellent durability, and performance comparable to commercial Pt/C catalysts. Compared with traditional hydrothermal methods, LASiS provides a template-free and solvent-minimizing alternative that enables precise control over particle size, structure, and composition in a single-step process. This work highlights the potential of LASiS as a powerful tool to develop next-generation sustainable energy materials.

摘要

本研究提出了一种快速、环保且可扩展的方法,用于在溶液中通过激光烧蚀合成(LASiS)制备用于氧还原反应(ORR)的非贵金属电催化剂。我们证明,通过优化激光输出功率和烧蚀时间,可以直接合成钴基金属有机框架(MOF),并将其转化为由嵌入氮掺杂碳中的CoO、CoO和金属Co组成的混合纳米复合材料。这些材料具有高孔隙率、稳定的晶体结构以及增强的ORR活性,包括四电子转移途径、优异的耐久性,并且性能与商业Pt/C催化剂相当。与传统水热法相比,LASiS提供了一种无模板且溶剂用量最少的替代方法,能够在单步过程中精确控制粒径、结构和组成。这项工作突出了LASiS作为开发下一代可持续能源材料的强大工具的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2209/12273548/8e98da00259d/d5ra04056f-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验