Mokhtarnejad Mahshid, Ribeiro Erick L, Almasi Soheil, Khomami Bamin
Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville Tennessee 37996 USA
Material Research and Innovation Laboratory (MRAIL), University of Tennessee Knoxville Tennessee 37996 USA.
RSC Adv. 2025 Jul 18;15(31):25707-25716. doi: 10.1039/d5ra04056f. eCollection 2025 Jul 15.
This study presents a rapid, eco-friendly, and scalable method for fabricating non-precious metal electrocatalysts for the oxygen reduction reaction (ORR) using Laser Ablation Synthesis in Solution (LASiS). We demonstrate that by optimizing the laser output power and ablation time, Co-based metal-organic frameworks (MOFs) can be directly synthesized and converted into hybrid nanocomposites composed of CoO, CoO, and metallic Co embedded in nitrogen-doped carbon. These materials exhibit high porosity, stable crystalline structures, and enhanced ORR activity, including a four-electron transfer pathway, excellent durability, and performance comparable to commercial Pt/C catalysts. Compared with traditional hydrothermal methods, LASiS provides a template-free and solvent-minimizing alternative that enables precise control over particle size, structure, and composition in a single-step process. This work highlights the potential of LASiS as a powerful tool to develop next-generation sustainable energy materials.
本研究提出了一种快速、环保且可扩展的方法,用于在溶液中通过激光烧蚀合成(LASiS)制备用于氧还原反应(ORR)的非贵金属电催化剂。我们证明,通过优化激光输出功率和烧蚀时间,可以直接合成钴基金属有机框架(MOF),并将其转化为由嵌入氮掺杂碳中的CoO、CoO和金属Co组成的混合纳米复合材料。这些材料具有高孔隙率、稳定的晶体结构以及增强的ORR活性,包括四电子转移途径、优异的耐久性,并且性能与商业Pt/C催化剂相当。与传统水热法相比,LASiS提供了一种无模板且溶剂用量最少的替代方法,能够在单步过程中精确控制粒径、结构和组成。这项工作突出了LASiS作为开发下一代可持续能源材料的强大工具的潜力。