Suppr超能文献

冠心病合并肾功能不全患者院内死亡预测模型的开发与验证

Development and validation of a predictive model for in-hospital mortality in patients with coronary heart disease and renal insufficiency.

作者信息

Li Yahui, Cai Hongsen, Zheng Wei, Wang Meijie, Huang Man, Wang Luyun, Wang Daowen, Zhao Chunxia, Hou Wenguang, Ding Hu, Wang Yan, Zhu Hongling

机构信息

Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan, 430030, China.

College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430030, China.

出版信息

Int J Cardiol Cardiovasc Risk Prev. 2025 Jul 1;26:200463. doi: 10.1016/j.ijcrp.2025.200463. eCollection 2025 Sep.

Abstract

BACKGROUND

Coronary Heart Disease (CHD) with renal insufficiency is a significant global health issue. This study aimed to develop and validate a predictive model for in-hospital mortality to enable early risk identification in these patients.

METHODS

We analyzed data from 11,830 CHD patients with renal insufficiency treated at Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China (1994-2023). Among 113 clinical variables, five key features-age, high-sensitivity C-reactive protein (hs-CRP), estimated glomerular filtration rate (eGFR), creatine kinase (CK), and blood urea-were selected using Recursive Feature Elimination. Six machine learning models (Random Forest, XGBoost, Decision Tree, Neural Network, Logistic Regression, and Support Vector Machine) were developed and assessed for discrimination, calibration, and clinical utility. Temporal validation was performed using data from May 16, 2023 to October 31, 2024. SHapley Additive exPlanations (SHAP) were used for model interpretation.

RESULTS

Of the 11,830 patients, 694 (5.9 %) died during hospitalization. Among the six models, XGBoost showed the best overall performance in the test set, achieving the highest AUC (0.926), lowest Brier score (0.034), highest accuracy (0.957), and balanced sensitivity (0.381) and F1 score (0.512). Decision curve analysis confirmed its superior clinical utility. In a temporally independent validation cohort of 5983 patients, XGBoost maintained strong predictive performance (AUC = 0.901), demonstrating excellent robustness and generalizability.

CONCLUSIONS

The XGBoost-based model accurately predicts in-hospital mortality in CHD patients with renal insufficiency, supporting early risk stratification and clinical decision-making.

摘要

背景

合并肾功能不全的冠心病(CHD)是一个重大的全球健康问题。本研究旨在开发并验证一种预测住院死亡率的模型,以便对这些患者进行早期风险识别。

方法

我们分析了在中国湖北省武汉市华中科技大学同济医学院附属同济医院接受治疗的11830例合并肾功能不全的冠心病患者的数据(1994 - 2023年)。在113个临床变量中,使用递归特征消除法选择了五个关键特征——年龄、高敏C反应蛋白(hs-CRP)、估算肾小球滤过率(eGFR)、肌酸激酶(CK)和血尿素。开发了六种机器学习模型(随机森林、XGBoost、决策树、神经网络、逻辑回归和支持向量机),并对其区分能力、校准能力和临床实用性进行了评估。使用2023年5月16日至2024年10月31日的数据进行时间验证。使用SHapley加性解释(SHAP)进行模型解释。

结果

在11830例患者中,694例(5.9%)在住院期间死亡。在六种模型中,XGBoost在测试集中表现出最佳的整体性能,达到最高的AUC(0.926)、最低的Brier评分(0.034)、最高的准确率(0.957)、平衡灵敏度(0.381)和F1评分(0.512)。决策曲线分析证实了其优越的临床实用性。在一个包含5983例患者的时间独立验证队列中,XGBoost保持了强大的预测性能(AUC = 0.901),显示出出色的稳健性和泛化能力。

结论

基于XGBoost的模型能够准确预测合并肾功能不全的冠心病患者的住院死亡率,有助于早期风险分层和临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0aa/12271761/660cece1bfc5/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验