Suppr超能文献

急性冠状动脉综合征认知衰弱预测诊断列线图模型的开发与验证

Development and Validation of a Diagnostic Nomogram Model for Predicting Cognitive Frailty in Acute Coronary Syndrome.

作者信息

Wang Shan, Sun Ying, Tang Wen, Lu Shangxin, Feng Feng, Hou Xiaopei, Ma Lihong, Li Runzhi, Hu Jieqiong, Liu Bing, Xing Yunli

机构信息

Department of Geriatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China.

Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.

出版信息

Clin Interv Aging. 2025 Jul 14;20:1015-1027. doi: 10.2147/CIA.S527085. eCollection 2025.

Abstract

BACKGROUND

Cognitive frailty (CF) is strongly associated with major adverse cardiovascular events, yet its assessment requires specialized equipment, limiting clinical practicality. This study aimed to develop and validate a nomogram model for predicting CF in patients with acute coronary syndrome (ACS) to enhance early identification and intervention.

METHODS

Patients with ACS (N=547) were enrolled and randomly split into a training set (70%) and a testing set (30%). The training set was used to construct the nomogram, while the testing set was used for validation. Model performance was evaluated using the receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) to assess discrimination, accuracy, and clinical utility, respectively.

RESULTS

The nomogram included six predictors: education level, age, systolic blood pressure (SBP), Charlson Comorbidity Index (CCI), Short Physical Performance Battery (SPPB), and nutritional status. The model demonstrated strong discriminatory power, with an area under the ROC curve of 0.854 (95% CI: 0.741-0.861) in the training cohort and 0.733 (95% CI: 0.500-0.898) in the testing cohort. Calibration analysis confirmed high accuracy, and DCA indicated significant net benefits across both cohorts, supporting its clinical applicability.

CONCLUSION

The nomogram effectively predicts CF in ACS patients by considering education, age, SBP, CCI, SPPB, and nutritional status, serving as a visual aid for healthcare providers to facilitate the early identification and intervention of CF. Future research is needed to validate the nomogram's efficacy in diverse populations and explore standardized assessment methods that enhance its clinical applicability in mitigating CF in ACS patients.

摘要

背景

认知衰弱(CF)与主要不良心血管事件密切相关,但其评估需要专门设备,限制了临床实用性。本研究旨在开发并验证一种用于预测急性冠状动脉综合征(ACS)患者CF的列线图模型,以加强早期识别和干预。

方法

纳入ACS患者(N = 547),并随机分为训练集(70%)和测试集(30%)。训练集用于构建列线图,测试集用于验证。使用受试者工作特征(ROC)曲线、校准曲线和决策曲线分析(DCA)分别评估模型性能,以评估区分度、准确性和临床实用性。

结果

列线图包括六个预测因素:教育水平、年龄、收缩压(SBP)、Charlson合并症指数(CCI)、简短体能测试电池(SPPB)和营养状况。该模型显示出强大的区分能力,训练队列中ROC曲线下面积为0.854(95%CI:0.741 - 0.861),测试队列中为0.733(95%CI:0.500 - 0.898)。校准分析证实了高准确性,DCA表明两个队列均有显著的净效益,支持其临床适用性。

结论

该列线图通过考虑教育、年龄、SBP、CCI、SPPB和营养状况,有效预测ACS患者的CF,为医疗保健提供者提供视觉辅助,以促进CF的早期识别和干预。未来需要开展研究,在不同人群中验证列线图的疗效,并探索标准化评估方法,以增强其在减轻ACS患者CF方面的临床适用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验