Suppr超能文献

糖尿病患者中胱抑素C与高血压风险的关联:一项多队列横断面研究。

The association between cystatin C and hypertension risk in diabetes patients: A multi-cohort cross-sectional study.

作者信息

Kuang Ye, Wang Jia, Wang Yang, Peng Chuanmei, He Pei, Ji Yong, Tian Jinrong, Yuan Yong, Feng Lei

机构信息

Department of Clinical Laboratory, Yan'an Hospital Affiliated to Kunming Medical University, No. 245 East Renmin Road, Kunming 650051, China.

出版信息

iScience. 2025 Jun 23;28(7):112979. doi: 10.1016/j.isci.2025.112979. eCollection 2025 Jul 18.

Abstract

Diabetes mellitus with hypertension (DM + HTN) markedly elevates cardiovascular risks, yet its predictors remain unclear. Analyzing 5210 DM patients from three cohorts, this study identified serum cystatin C (CysC) as an independent risk factor for DM + HTN through univariate and multivariate logistic regression. A risk prediction model incorporating CysC concentration was developed and adjusted for age, sex, race, education, body mass index, smoking status, and drinking status. The model demonstrated good predictive performance and net benefit through receiver operating characteristic curves, calibration curves, and decision curve analysis. Restricted cubic spline analysis demonstrated a nonlinear relationship between CysC levels and DM + HTN risk, with concentrations above 0.94 mg/L exhibiting elevated risk. The model's performance was further evaluated using 10 machine learning algorithms and interpreted using SHapley Additive exPlanations (SHAP). This research provides a CysC-based model to aid clinicians in early identification of high-risk individuals.

摘要

糖尿病合并高血压(DM + HTN)显著增加心血管风险,但其预测因素仍不明确。本研究分析了来自三个队列的5210例糖尿病患者,通过单因素和多因素逻辑回归确定血清胱抑素C(CysC)为DM + HTN的独立危险因素。开发了一个纳入CysC浓度的风险预测模型,并根据年龄、性别、种族、教育程度、体重指数、吸烟状况和饮酒状况进行了调整。通过受试者工作特征曲线、校准曲线和决策曲线分析,该模型显示出良好的预测性能和净效益。受限立方样条分析表明CysC水平与DM + HTN风险之间存在非线性关系,浓度高于0.94 mg/L时风险升高。使用10种机器学习算法进一步评估了该模型的性能,并使用SHapley加性解释(SHAP)进行了解释。本研究提供了一个基于CysC的模型,以帮助临床医生早期识别高危个体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7b/12272746/8bac35748b2f/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验