Malins Jeffrey G, Anisuzzaman D M, Jackson John I, Lee Eunjung, Naser Jwan A, Bird Jared G, Friedman Paul A, Ngo Christie C, Oh Jae K, Tsaban Gal, Pellikka Patricia A, Thaden Jeremy J, Lopez-Jimenez Francisco, Attia Zachi I, Pislaru Sorin V, Kane Garvan C
Department of Cardiovascular Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
Eur Heart J Imaging Methods Pract. 2025 May 9;3(3):qyaf049. doi: 10.1093/ehjimp/qyaf049. eCollection 2024 Aug.
To develop a deep learning model that: (i) utilizes transthoracic echocardiography (TTE) clips to detect left ventricular (LV) enlargement without being provided information regarding a patient's sex and body size; and (ii) can be accurately applied to clips acquired using either standard comprehensive TTE or handheld cardiac ultrasound (HCU).
Using retrospective TTE data (training: 8722 patients; internal validation: 468 patients), we developed a deep learning model that estimates a patient's end-diastolic LV volume (indexed to body surface area and normalized across the sexes), and then thresholds this estimate to perform the following classifications: (1) normally sized LV vs. ≥ mild LV enlargement; (2) normal/mildly enlarged LV vs. ≥ moderate LV enlargement. For retrospective datasets, the model showed strong performance in TTE across three geographically distinct locations (Minnesota and Wisconsin: 1082 patients, AUC = 0.925 and 0.953 for classifications 1 and 2, respectively; Arizona: 1475 patients, AUC = 0.935 and 0.969; and Florida: 1481 patients, AUC = 0.934 and 0.970). Additionally, performance was strong for both TTE and HCU clips collected from a prospective cohort of 410 patients who underwent HCU immediately following TTE (TTE: AUC = 0.925 and 0.971; HCU: AUC = 0.874 and 0.902, for classifications 1 and 2, respectively).
An automated deep learning model applied to TTE or HCU images accurately categorizes LV volumes. These results lay a foundation for future work aimed at optimizing clinical outcomes for heart failure patients by enabling early detection of LV enlargement across various point-of-care settings.
开发一种深度学习模型,该模型能够:(i)利用经胸超声心动图(TTE)片段检测左心室(LV)扩大,且无需提供患者性别和体型信息;(ii)能够准确应用于使用标准综合TTE或手持式心脏超声(HCU)获取的片段。
利用回顾性TTE数据(训练:8722例患者;内部验证:468例患者),我们开发了一种深度学习模型,该模型可估计患者的舒张末期LV容积(根据体表面积进行指数化并在不同性别间进行标准化),然后对该估计值设定阈值以进行以下分类:(1)正常大小的LV与≥轻度LV扩大;(2)正常/轻度扩大的LV与≥中度LV扩大。对于回顾性数据集,该模型在三个地理位置不同的地区的TTE中均表现出强大性能(明尼苏达州和威斯康星州:1082例患者,分类1和2的AUC分别为0.925和0.953;亚利桑那州:1475例患者,AUC为0.935和0.969;佛罗里达州:1481例患者,AUC为0.934和0.970)。此外,对于从410例患者的前瞻性队列中收集的TTE和HCU片段,性能也很强,这些患者在TTE后立即接受了HCU检查(TTE:分类1和2的AUC分别为0.925和0.971;HCU:AUC分别为0.874和0.902)。
应用于TTE或HCU图像的自动化深度学习模型能够准确分类LV容积。这些结果为未来旨在通过在各种床旁检查环境中早期检测LV扩大来优化心力衰竭患者临床结局的工作奠定了基础。