Suppr超能文献

通过考察神经活动的固有维和嵌入维度来解释神经计算。

Interpreting neural computations by examining intrinsic and embedding dimensionality of neural activity.

机构信息

McGovern Institute for Brain Research, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

Laboratoire de Neurosciences Cognitives, INSERM U960, École Normale Supérieure - PSL Research University, 75005, Paris, France.

出版信息

Curr Opin Neurobiol. 2021 Oct;70:113-120. doi: 10.1016/j.conb.2021.08.002. Epub 2021 Sep 17.

Abstract

The ongoing exponential rise in recording capacity calls for new approaches for analysing and interpreting neural data. Effective dimensionality has emerged as an important property of neural activity across populations of neurons, yet different studies rely on different definitions and interpretations of this quantity. Here, we focus on intrinsic and embedding dimensionality, and discuss how they might reveal computational principles from data. Reviewing recent works, we propose that the intrinsic dimensionality reflects information about the latent variables encoded in collective activity while embedding dimensionality reveals the manner in which this information is processed. We conclude by highlighting the role of network models as an ideal substrate for testing more specifically various hypotheses on the computational principles reflected through intrinsic and embedding dimensionality.

摘要

持续指数级增长的记录容量要求我们采用新的方法来分析和解释神经数据。有效维度已经成为神经元群体活动的一个重要特性,但不同的研究依赖于对这个数量的不同定义和解释。在这里,我们专注于内在维度和嵌入维度,并讨论它们如何从数据中揭示计算原理。在回顾最近的工作时,我们提出内在维度反映了集体活动中编码的潜在变量的信息,而嵌入维度则揭示了信息处理的方式。最后,我们强调了网络模型的作用,它是作为一个理想的基质,用于更具体地测试内在维度和嵌入维度所反映的计算原理的各种假设。

相似文献

2
Decoding and encoding (de)mixed population responses.解码和编码(de)混合群体反应。
Curr Opin Neurobiol. 2019 Oct;58:112-121. doi: 10.1016/j.conb.2019.09.004. Epub 2019 Sep 25.
6
The role of population structure in computations through neural dynamics.人口结构在神经动力学计算中的作用。
Nat Neurosci. 2022 Jun;25(6):783-794. doi: 10.1038/s41593-022-01088-4. Epub 2022 Jun 6.

引用本文的文献

3
A neural manifold view of the brain.大脑的神经流形视角。
Nat Neurosci. 2025 Jul 28. doi: 10.1038/s41593-025-02031-z.
4
Disentangling signal and noise in neural responses through generative modeling.通过生成模型解析神经反应中的信号与噪声
PLoS Comput Biol. 2025 Jul 21;21(7):e1012092. doi: 10.1371/journal.pcbi.1012092. eCollection 2025 Jul.
9
The effects of the post-delay epochs on working memory error reduction.延迟后阶段对工作记忆错误减少的影响。
PLoS Comput Biol. 2025 May 13;21(5):e1013083. doi: 10.1371/journal.pcbi.1013083. eCollection 2025 May.

本文引用的文献

1
Toroidal topology of population activity in grid cells.网格细胞群体活动的环形拓扑结构。
Nature. 2022 Feb;602(7895):123-128. doi: 10.1038/s41586-021-04268-7. Epub 2022 Jan 12.
3
Estimating the dimensionality of the manifold underlying multi-electrode neural recordings.估计多电极神经记录所基于的流形的维数。
PLoS Comput Biol. 2021 Nov 29;17(11):e1008591. doi: 10.1371/journal.pcbi.1008591. eCollection 2021 Nov.
7
Geometry of abstract learned knowledge in the hippocampus.海马体中抽象学习知识的几何形状。
Nature. 2021 Jul;595(7865):80-84. doi: 10.1038/s41586-021-03652-7. Epub 2021 Jun 16.
9
High-precision coding in visual cortex.视觉皮层中的高精度编码
Cell. 2021 May 13;184(10):2767-2778.e15. doi: 10.1016/j.cell.2021.03.042. Epub 2021 Apr 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验