Suppr超能文献

用于长程电荷转移的导电自支撑生物聚合物全景:化学修饰和掺杂的影响。

Panorama of Conductive Freestanding Biopolymers for Long-Range Charge Transfer: Effect of Chemical Modification and Doping.

作者信息

Neogi Amalendu, Mondal Somen

机构信息

Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna, Maharashtra 431203, India.

出版信息

ACS Appl Mater Interfaces. 2025 Jul 30;17(30):42508-42529. doi: 10.1021/acsami.5c07719. Epub 2025 Jul 21.

Abstract

The intricate interplay of electron transfer (ET) and proton transfer (PT) across biomaterials extends beyond biology, paving the way for advancements in bioelectronics. These biomaterials, characterized by their biocompatibility, biodegradability, and renewability, offer a promising platform for applications in bioelectronics, biomedical devices, and energy technologies. This review explores the fundamental principles governing PT and ET, including the Grotthuss mechanism, Marcus theory, and relevant quantum mechanical effects. We highlight key advancements in freestanding protein-based biopolymers and their modifications to enhance the conductivity. The discussion begins with an overview of PT and ET theories, followed by synthesis methods for freestanding protein-based biopolymers, emphasizing the role of surface functional groups (oxo-acid and amine), water content, and the incorporation of light-active moieties to improve conductivity in bovine serum albumin (BSA)-based biopolymers. Furthermore, we examine the quantum integration of organic and nanoparticle dopants, such as metal-porphyrins, carbon dots (C-Dots), and C-Dots-based heterostructures within biopolymers, demonstrating their ability to enhance conductivity by establishing synergistic pathways for ionic and electronic charge transport. This analysis provides insights into how structural modifications influence dynamic charge transport, facilitating the development of high-performance bioelectronic devices. By integrating theoretical frameworks with experimental findings, this review illustrates how tuning proton and electron conductance mechanisms can unlock the potential for sustainable, scalable, and multifunctional biomaterials. Ultimately, this work serves as a foundation for interdisciplinary research, bridging materials science, biochemistry, and bioelectronics to enable innovative applications, including biosensors, biomedical devices, energy storage systems, and light-driven transistors.

摘要

电子转移(ET)和质子转移(PT)在生物材料中的复杂相互作用不仅限于生物学领域,还为生物电子学的发展铺平了道路。这些生物材料具有生物相容性、生物可降解性和可再生性,为生物电子学、生物医学设备和能源技术的应用提供了一个有前景的平台。本综述探讨了控制PT和ET的基本原理,包括Grotthuss机制、Marcus理论以及相关的量子力学效应。我们重点介绍了独立的基于蛋白质的生物聚合物及其修饰以提高导电性方面的关键进展。讨论首先概述PT和ET理论,然后是独立的基于蛋白质的生物聚合物的合成方法,强调表面官能团(含氧酸和胺)、含水量以及引入光活性部分对提高基于牛血清白蛋白(BSA)的生物聚合物导电性的作用。此外,我们研究了生物聚合物中有机和纳米颗粒掺杂剂(如金属卟啉、碳点(C-点)和基于C-点的异质结构)的量子整合,证明它们通过建立离子和电子电荷传输的协同途径来提高导电性的能力。该分析深入了解了结构修饰如何影响动态电荷传输,促进了高性能生物电子器件的开发。通过将理论框架与实验结果相结合,本综述说明了调节质子和电子传导机制如何释放可持续、可扩展和多功能生物材料的潜力。最终,这项工作为跨学科研究奠定了基础,架起了材料科学、生物化学和生物电子学之间的桥梁,以实现创新应用,包括生物传感器、生物医学设备、能量存储系统和光驱动晶体管。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验