Goyal Bharti, Gill Nasib Singh, Gulia Preeti, Alduaiji Noha, Shukla Piyush Kumar, J Shreyas
Department of Computer Science & Applications, Maharshi Dayanand University, Rohtak, Haryana, India.
Department of Computer Science, College of Computer and Information Sciences, Majmaah University, Al Majmaah, 11952, Saudi Arabia.
Sci Rep. 2025 Jul 21;15(1):26464. doi: 10.1038/s41598-025-03973-x.
Counterfeit accounts still pose a big problem for Instagram users. Trust is being eroded, and online security is being compromised as a result of these accounts' constant contribution to Instagram's spam, harmful information, and deceptive content problems. To find these profiles, we use a number of analytical parameters. Using machine learning is one of the main reasons for developing a model to effectively combat these false accounts. We investigate and provide a solution to the issue of Instagram's ability to identify phony accounts in this research. An F1 score of 98%, a recall of 98%, a precision of 98.3%, and an accuracy of 98.24% are all achieved by the new, perfectly accurate model that is used in the proposed research. Our method combines scale_pos_weight optimization technique with XGBoost, SMOTE with balanced classes, and GridSearchCV to fine-tune key hyperparameters of Random Forest for fine-tuning purposes, therefore achieving this goal. This paper provides state-of-the-art methods for reducing the prevalence of false accounts, which will improve the efficiency and trustworthiness of identity verification systems used online. In this study, we provide an improved hybrid system with optimization that finds trends in phony accounts over time using adaptive discovery and strong analysis and class-balancing methods. In addition to improving online identity verification systems' detection capabilities, this framework establishes a new standard for trust safeguarding via user trust and lays the groundwork for future breakthroughs in social media security.
假冒账号仍然给Instagram用户带来了很大的问题。信任正在受到侵蚀,由于这些账号不断给Instagram带来垃圾信息、有害信息和欺骗性内容问题,网络安全也受到了损害。为了找出这些账号,我们使用了一些分析参数。使用机器学习是开发一个有效打击这些虚假账号的模型的主要原因之一。在本研究中,我们调查并为Instagram识别虚假账号的能力问题提供了一个解决方案。所提出的研究中使用的全新的、完全准确的模型实现了98%的F1分数、98%的召回率、98.3%的精确率以及98.24%的准确率。我们的方法将scale_pos_weight优化技术与XGBoost相结合,将SMOTE与平衡类相结合,并使用GridSearchCV对随机森林的关键超参数进行微调,从而实现了这一目标。本文提供了最先进的方法来减少虚假账号的流行,这将提高在线身份验证系统的效率和可信度。在本研究中,我们提供了一个经过优化的改进型混合系统,该系统使用自适应发现、强大的分析和类平衡方法来发现虚假账号随时间的趋势。除了提高在线身份验证系统的检测能力外,该框架还通过用户信任建立了一个新的信任保障标准,并为社交媒体安全的未来突破奠定了基础。