Wang Fakun, Zhu Song, Chen Wenduo, Duan Ruihuan, Dai Tengfei, Ma Hui, Yan Congliao, Fang Shi, Yu Jianbo, Zhang Yue, Dong Qikan, Deng Wenjie, Liu Zheng, Wang Qi Jie
School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
Light Sci Appl. 2025 Jul 21;14(1):246. doi: 10.1038/s41377-025-01905-y.
The rapid development of modern infrared optoelectronic technology has driven a growing demand for high-sensitivity mid-wave infrared (MWIR) photodetectors capable of reliable room-temperature operation. Achieving optimal specific detectivity, a critical performance metric for MWIR photodetection, remains challenging due to inherent limitations imposed such as high dark current, low optical absorption, or both. To address these challenges, we present an approach based on a bipolar-barrier architecture featuring a black phosphorus (BP)/MoTe/BP tunnel heterostructure integrated with an Au reflector. This configuration delivers simultaneous electrical and optical enhancement, effectively suppressing dark currents and significantly increasing optical absorption. The bipolar-barrier structure minimizes dark current by blocking thermally excited and bias-induced carrier leakage, while facilitating efficient tunneling of photogenerated carriers via trap-assisted photogating mechanisms. In addition, the Au reflector enhances optical absorption through interference effects. As a result, the heterostructure achieves remarkable performance metrics, including a room-temperature specific detectivity of ∼3.0 × 10cm Hz W, a high responsivity of ∼4 A W, and an external quantum efficiency of ∼140% within the MWIR range. These results establish the bipolar-barrier tunnel heterostructure as a highly efficient platform, paving the way for the next generation of advanced infrared optoelectronic devices.
现代红外光电技术的快速发展推动了对能够在室温下可靠运行的高灵敏度中波红外(MWIR)光电探测器的需求不断增长。由于存在诸如高暗电流、低光吸收或两者兼而有之的固有局限性,实现作为MWIR光探测关键性能指标的最佳比探测率仍然具有挑战性。为应对这些挑战,我们提出了一种基于双极势垒架构的方法,该架构具有集成了金反射器的黑磷(BP)/碲化钼(MoTe)/BP隧道异质结构。这种配置实现了电学和光学性能的同时增强,有效抑制了暗电流并显著提高了光吸收。双极势垒结构通过阻挡热激发和偏置诱导的载流子泄漏来最小化暗电流,同时通过陷阱辅助光闸机制促进光生载流子的有效隧穿。此外,金反射器通过干涉效应增强了光吸收。结果,该异质结构实现了卓越的性能指标,包括在MWIR范围内室温比探测率约为3.0×10cm Hz W、高响应度约为4 A W以及外量子效率约为140%。这些结果确立了双极势垒隧道异质结构作为一个高效平台,为下一代先进红外光电器件铺平了道路。