Suppr超能文献

人工智能在脑出血护理中的应用:对临床和护理实践的启示——一篇叙述性文献综述

Artificial intelligence applications in intracerebral hemorrhage care: implications for clinical and nursing practice - a narrative literature review.

作者信息

Kim Seoyoung, Lee Jungmin, Nam Soo-Hyun

机构信息

Department of Artificial Intelligence Convergence, Graduate School, Hallym University, Chuncheon, Republic of Korea.

School of Nursing, Hallym University, Chuncheon, Republic of Korea.

出版信息

Front Rehabil Sci. 2025 Jul 7;6:1620335. doi: 10.3389/fresc.2025.1620335. eCollection 2025.

Abstract

Little is known about how artificial intelligence tools are utilized across the different stages of intracerebral hemorrhage care or how they contribute to clinical decision-making and patient outcomes in this population. This narrative review aimed to explore current applications of artificial intelligence in the clinical management of patients with intracerebral hemorrhage. A comprehensive search was conducted across five electronic databases (PubMed, CINAHL Plus with Full Text, Ovid MEDLINE, ProQuest, and Web of Science), supplemented by additional manual searches. This review included studies published in English between January 1, 2014, and December 31, 2024. Seven studies examining the application of artificial intelligence in the acute and post-acute phases of intracerebral hemorrhage care were included. In the acute phase, machine learning models such as Random Forest and XGBoost outperform traditional prognostic scoring systems, offering clinicians more precise tools for early risk stratification. In the post-acute phase, AI contributes to continuity of care by supporting data completion, rehabilitation planning, and remote rehabilitation, thereby enhancing patient-centered nursing practice with high predictive accuracy and practical utility. These findings suggest that artificial intelligence holds significant promise for enhancing prognosis prediction, clinical decision-making, and continuity of care in patients with intracerebral hemorrhage.

摘要

关于人工智能工具如何在脑出血治疗的不同阶段得到应用,或者它们如何影响这一人群的临床决策和患者预后,目前所知甚少。本叙述性综述旨在探讨人工智能在脑出血患者临床管理中的当前应用情况。我们对五个电子数据库(PubMed、CINAHL Plus with Full Text、Ovid MEDLINE、ProQuest和Web of Science)进行了全面检索,并辅以额外的手工检索。本综述纳入了2014年1月1日至2024年12月31日期间发表的英文研究。其中包括七项关于人工智能在脑出血治疗急性期和急性后期应用的研究。在急性期,随机森林和XGBoost等机器学习模型优于传统的预后评分系统,为临床医生提供了更精确的早期风险分层工具。在急性后期,人工智能通过支持数据完善、康复计划制定和远程康复,促进了连续护理,从而以高预测准确性和实际效用加强了以患者为中心的护理实践。这些发现表明,人工智能在改善脑出血患者的预后预测、临床决策和连续护理方面具有巨大潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验