Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA.
Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, South Korea.
Nat Commun. 2022 Sep 5;13(1):5223. doi: 10.1038/s41467-022-32790-3.
As machine vision technology generates large amounts of data from sensors, it requires efficient computational systems for visual cognitive processing. Recently, in-sensor computing systems have emerged as a potential solution for reducing unnecessary data transfer and realizing fast and energy-efficient visual cognitive processing. However, they still lack the capability to process stored images directly within the sensor. Here, we demonstrate a heterogeneously integrated 1-photodiode and 1 memristor (1P-1R) crossbar for in-sensor visual cognitive processing, emulating a mammalian image encoding process to extract features from the input images. Unlike other neuromorphic vision processes, the trained weight values are applied as an input voltage to the image-saved crossbar array instead of storing the weight value in the memristors, realizing the in-sensor computing paradigm. We believe the heterogeneously integrated in-sensor computing platform provides an advanced architecture for real-time and data-intensive machine-vision applications via bio-stimulus domain reduction.
随着机器视觉技术从传感器中生成大量数据,它需要高效的计算系统来进行视觉认知处理。最近,传感器内计算系统作为一种减少不必要的数据传输和实现快速、节能的视觉认知处理的潜在解决方案而出现。然而,它们仍然缺乏直接在传感器内处理存储图像的能力。在这里,我们展示了一种异质集成的 1 光电二极管和 1 忆阻器 (1P-1R) 交叉点用于传感器内视觉认知处理,模拟了哺乳动物的图像编码过程,从输入图像中提取特征。与其他神经形态视觉过程不同,训练后的权重值被用作输入电压施加到图像保存的交叉点阵列,而不是将权重值存储在忆阻器中,实现了传感器内计算范例。我们相信,通过生物刺激域减少,这种异质集成的传感器内计算平台为实时和数据密集型机器视觉应用提供了一种先进的架构。