Liu Tao, Qu Hang, Harding Sam D, Borne Isaiah, Chen Linjiang, Ward John W, Weston Simon C, Cooper Andrew I
Materials Innovation Factory, Department of Chemistry, University of Liverpool, Liverpool, UK.
ExxonMobil Technology and Engineering Company, Annandale, USA.
Nat Chem. 2025 Jul 22. doi: 10.1038/s41557-025-01873-1.
The capture of CO emissions using porous solids is challenging because polar water molecules bind more strongly in most materials than non-polar CO molecules. This is a challenge for both flue gas capture and for direct air capture alike. Here we develop a bottom-up computational screening workflow to calculate the binding energy of 27,446 diverse molecular fragments with both CO and water. Most molecules favour water binding, but bent, clip-like aromatic molecules exhibit potential for the desired reverse selectivity. This suggests that aromatic macrocycles with specific shapes can promote multiple weak π-π interactions with CO that surpass stronger but less numerous dipole-π interactions with water. We synthesize two water- and acid-stable molecular prisms with triangular and square geometries, as suggested by computation. Experiments confirm that the CO capture capacity of these prisms is unaffected by high relative humidity, surpassing the performance of benchmark commercial porous materials.
使用多孔固体捕获一氧化碳排放具有挑战性,因为在大多数材料中,极性水分子比非极性一氧化碳分子结合得更牢固。这对烟气捕获和直接空气捕获来说都是一个挑战。在此,我们开发了一种自下而上的计算筛选工作流程,以计算27446种不同分子片段与一氧化碳和水的结合能。大多数分子倾向于与水结合,但弯曲的、夹子状的芳香分子表现出所需的反向选择性潜力。这表明具有特定形状的芳香大环可以促进与一氧化碳的多个弱π-π相互作用,超过与水更强但数量更少的偶极-π相互作用。我们按照计算结果合成了两种具有三角形和正方形几何形状的耐水和耐酸分子棱镜。实验证实,这些棱镜的一氧化碳捕获能力不受高相对湿度的影响,超过了基准商用多孔材料的性能。