Zheng Yunsheng, Ma Zhijun, Weng Xingyuan, Cheng Liang, Qin Ying
College of Mining, Liaoning Technical University Fuxin 123000 China
College of Materials Science & Engineering, Liaoning Technical University Fuxin 123000 China.
RSC Adv. 2025 Jul 22;15(32):26082-26090. doi: 10.1039/d5ra02203g. eCollection 2025 Jul 21.
Electromagnetic wave absorption materials play an increasingly important role in modern society for military stealth technology and 5G smart era. Microcrystalline graphene oxide (MGO) absorption materials have prepared by chemical oxidation method using microcrystalline graphite as raw material. The lamellar structure, functional groups, defects, and microwave absorption properties of MGO have characterized by X-ray diffractometer (XRD), Raman Spectrometer (Raman), Fourier Transform Infrared Spectrometer (FT-IR), Atomic Force Microscope (AFM), and Vector Network Analyzer (VNA). It is elucidated that the electromagnetic wave absorption mechanism of MGO. The results show that when the dosage of microcrystalline graphite is 1.0 g, the overall layer number of the MGO-1.0 is 1-2 layers, layer spacing is 0.900 nm, which exhibits the best microwave absorption properties, with its minimum reflection loss (RL) reaching -18.39 dB and its effective absorption band (EAB) is 3.06 GHz (7.97-11.03 GHz) at the microwave absorption layer thickness of 3.6 mm and the frequency of 9.42 GHz. This excellent microwave absorption properties is attributed to dipole polarization, defect polarization, and conductive loss. It is worth noting that the high conductivity, polar group, and edge defect density will cause the impedance mismatch of MGO and affect the microwave absorption properties.
电磁波吸收材料在现代社会的军事隐身技术和5G智能时代发挥着越来越重要的作用。以微晶石墨为原料,采用化学氧化法制备了微晶氧化石墨烯(MGO)吸收材料。利用X射线衍射仪(XRD)、拉曼光谱仪(Raman)、傅里叶变换红外光谱仪(FT-IR)、原子力显微镜(AFM)和矢量网络分析仪(VNA)对MGO的层状结构、官能团、缺陷和微波吸收性能进行了表征。阐明了MGO的电磁波吸收机理。结果表明,当微晶石墨用量为1.0 g时,MGO-1.0的总层数为1-2层,层间距为0.900 nm,具有最佳的微波吸收性能,其最小反射损耗(RL)达到-18.39 dB,在微波吸收层厚度为3.6 mm、频率为9.42 GHz时,其有效吸收带宽(EAB)为3.06 GHz(7.97-11.03 GHz)。这种优异的微波吸收性能归因于偶极极化、缺陷极化和传导损耗。值得注意的是,高电导率、极性基团和边缘缺陷密度会导致MGO的阻抗失配,影响微波吸收性能。