Sharma Neha, Gupta Sheifali, Al-Yarimi Fuad Ali Mohammed, Ghadi Yazeed Yasin, Bharany Salil, Rehman Ateeq Ur, Hussen Seada
Chitkara Institute of Engineering and Technology Chitkara University Rajpura Punjab India.
Applied College of Mahail Aseer King Khalid University Saudi Arabia.
Food Sci Nutr. 2025 Jul 21;13(7):e70668. doi: 10.1002/fsn3.70668. eCollection 2025 Jul.
Accurate and efficient plant disease segmentation is crucial for early diagnosis and precision agriculture. In this study, we propose a DBA-DeepLab model, i.e., a Dual-Backbone Attention-Enhanced DeepLab model, which integrates DeepLabV3+ with dual backbones of ResNet-50 and EfficientNet-B3 and a Convolutional Block Attention Module (CBAM) for improved plant disease segmentation. The integration of multi-scale feature extraction, attention mechanisms, and edge preservation with the Sobel filter enhances the ability of the model to focus on disease-affected regions with more accuracy and reduce false positives and false negatives. The model was trained and validated using the PlantDoc dataset with a batch size of 32, Adam optimizer, and 50 epochs for better convergence and generalization. Experimental results show that the proposed DBA-DeepLab outperforms DeepLabV3+ with EfficientNet-B3 encoder, DeepLabV3+ with ResNet-50 encoder, and DeepLabV3+ with dual encoder (EfficientNet-B3 and ResNet-50) in terms of segmentation parameters. The proposed model yields 99.35% accuracy, a 91.48% Dice coefficient, an 85.85% IoU coefficient, 96.78% precision, and 100% recall, outperforming the state-of-the-art. Grad-CAM visualization was applied to validate the model's interpretability, affirming its capacity to highlight disease-affected regions and avoid background noise. Comparative analyses with these DeepLabV3+ variants support the improved generalization, segmentation accuracy, and robustness of the proposed model. These results show that DBA-DeepLab is an extremely efficient and scalable solution for plant disease segmentation, with potential applications in smart farming, automatic disease detection, and precision agriculture.
准确且高效的植物病害分割对于早期诊断和精准农业至关重要。在本研究中,我们提出了一种DBA-DeepLab模型,即双骨干注意力增强型DeepLab模型,它将DeepLabV3+与ResNet-50和EfficientNet-B3的双骨干以及卷积块注意力模块(CBAM)相结合,以改进植物病害分割。多尺度特征提取、注意力机制以及通过Sobel滤波器进行边缘保留的整合,提高了模型更准确地聚焦于病害影响区域的能力,并减少了误报和漏报。该模型使用PlantDoc数据集进行训练和验证,批量大小为32,采用Adam优化器,训练50个轮次以实现更好的收敛和泛化。实验结果表明,所提出的DBA-DeepLab在分割参数方面优于带有EfficientNet-B3编码器的DeepLabV3+、带有ResNet-50编码器的DeepLabV3+以及带有双编码器(EfficientNet-B3和ResNet-50)的DeepLabV3+。所提出的模型准确率达到99.35%,Dice系数为91.48%,IoU系数为85.85%,精确率为96.78%,召回率为100%,优于当前最先进的模型。应用Grad-CAM可视化来验证模型的可解释性,证实了其突出病害影响区域并避免背景噪声的能力。与这些DeepLabV3+变体的对比分析支持了所提出模型改进后的泛化能力、分割准确率和鲁棒性。这些结果表明,DBA-DeepLab是一种用于植物病害分割的极其高效且可扩展的解决方案,在智能农业、自动病害检测和精准农业中具有潜在应用。